Topological Solitons in Low-energy Effective Lagrangians
低能有效拉格朗日中的拓扑孤子
基本信息
- 批准号:61540191
- 负责人:
- 金额:$ 0.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1986
- 资助国家:日本
- 起止时间:1986 至 1987
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have made researches on the following two subjects.1. Topological Solitons in QCDBaryons can be considered as topological solitons (Skyrmions) in the system of mesons. The simple Skyrme model accounts for properties of nucleons with 30 % of accuracy. The first project was to improve numerical agreement by including vector mesons into the system. The modified model, which is a Weinberg-type chiral model, has become considerably complicated since it involves several new functions to bedetermined. However, the best fit we obtained was not better than 25% of accuracy. Our next project was to study quasi-stable solitons, which the Weinberg-type chiral model contains, decaying mainly into -mesons. We predict this to be the -meson recently discovered because it decays mainly in -mesons. We made numerical studies of a quasi-stable soliton to determine its mass and life-time. We have also tried to give proper quantum numbers to the quasi-stable solitons, without success, because isospin and spin of the topological soliton cannot be assigned independently to the Skyrmions.2. Topological Solitons in String TheoriesIt is believed that the ultimate theory of the elementary particles is the string theory. It would be exciting if all the elementary particles can be derived from the 26-dimensional bosonic sring. As a first project towards this goal we have shown that the 10-dimensional superstring emerges from the 26-dimensional bosonic string, where the space-time spinors are topological solitons. In our work we have explicitly constructed an OSp(9,1/2)xOSp(3,3/6) supermultiplet as topological solitons in the 26-dimensional bosonic string. Here, the OSp(9,1/2) supermultiplet describes precisely the 10-dimensional superstring. We have also proved that the OSp(3,3/6) supermultiplet is decoupled consistently by a mechanism similar to the no-go theorem in the covariant string theory.
我们对以下两个问题进行了研究。QCD重子中的拓扑孤子可以看作是介子系统中的拓扑孤子(Skyrmions)。简单的Skyrme模型能以30%的精度解释核子的性质.第一个项目是通过将矢量介子纳入系统来提高数值一致性。修正后的模型是一个温伯格型手征模型,由于它涉及了几个新的函数,因此变得相当复杂。然而,我们获得的最佳拟合精度不超过25%。我们的下一个项目是研究准稳定孤子,其中温伯格型手征模型包含,主要衰减成介子。我们预测这是最近发现的介子,因为它主要在介子中衰变。对准稳定孤子进行了数值研究,确定了其质量和寿命。我们也尝试给准稳定孤子适当的量子数,但没有成功,因为拓扑孤子的同位旋和自旋不能独立地分配给Skyrmions。弦论中的拓扑孤子人们认为,基本粒子的终极理论是弦论。如果所有的基本粒子都能从26维玻色子环中导出,那将是令人兴奋的。作为实现这一目标的第一个项目,我们已经证明了10维超弦是从26维玻色弦中产生的,其中时空旋量是拓扑孤子。我们在26维玻色弦中构造了一个OSp(9,1/2)xOSp(3,3/6)超多重态作为拓扑孤子.在这里,OSp(9,1/2)超多重态精确地描述了10维超弦。我们还证明了OSp(3,3/6)超多重态是通过类似于协变弦理论中的no-go定理的机制一致解耦的。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Z.F.Ezawa: Nuclear Physics(North-Holland Publishing CO.)Tohoku University preprint TU/86/304.
Z.F.Ezawa:核物理学(北荷兰出版公司)东北大学预印本 TU/86/304。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Z. F. Ezawa: "Topological Soclitons and Compactified Bosonic String" Physical Review. D34. 3805-3810 (1986)
Z. F. Ezawa:“拓扑 Soclitons 和紧致玻色弦”物理评论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EZAWA Zyun F.其他文献
EZAWA Zyun F.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EZAWA Zyun F.', 18)}}的其他基金
Topological Solitons and Low-Energy Phenomena on Noncommutative Space
非交换空间上的拓扑孤子和低能现象
- 批准号:
21540254 - 财政年份:2009
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Physics in Low-Dimensional Space and Noncommutative Geometry
低维空间物理与非交换几何
- 批准号:
14540237 - 财政年份:2002
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Field Theory on Noncommutative Space and Its Applications
非交换空间的量子场论及其应用
- 批准号:
13135202 - 财政年份:2001
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
相似海外基金
Supersymmetric non-topological soliton in field theory and its application to cosmology
场论中的超对称非拓扑孤子及其在宇宙学中的应用
- 批准号:
18740146 - 财政年份:2006
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




