Unification Theory by Superstring Model and Early Cosmology
超弦模型和早期宇宙学的统一理论
基本信息
- 批准号:61540209
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1986
- 资助国家:日本
- 起止时间:1986 至 1987
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project started in 1986 to study two fundamental questions of the string and/or the superstring: (a) whether the string theory can be qualified as a theory of unifying the space-time geometry and fundamental interactions of the matter, and (b) whether the string theory provides us with any reasonable universe.We first questioned ourselves why the string is used as amodel of unification theory and none others such as the membrane, etc.. For any model to be the candidate, it must generate zero-mass particles (gauge bosons and graveion) in its spectum. We calculated the Casimir energy of membrane and showed that it never generates massless particles if the space-time dimensions are integers. This is supposed to be true except for the string.For the string to be qualified as the unification theory, the field theory of string must be formulated in a way that is geometry independent. We studied the cubic action model of string which was suggested by Friedan, Yoneya and Witten, and then m … More athematically formulated by Hata, Itoh, Kygo, Kunitomo and Ogawa, and Horowitz, Lykken, Rhom and Strominger. By solving the equation of motion derived from the cubic action, we proved that all the conformal invariant background metric fields (including torsion and dilaton), which derived in the non-linear sigma model approach, are the classical solutions of the cubic action as well. This shows that the cubic action model is indeed a non-trivial and selfcontained geometry independent field theory of string.In order to extend above ideas to the superstring we studied a number of properties of superstring amplitudes. Polyakov's path integral method, which has been extensively used in the above arguments, was applied to superstrings and showed that the supermoduli and the conformal Killing spinor play fundamental roles in the gauge anomaly cancellation. These practices in superstring are indispendable in our next project where the geometry independent field theory of superstring is to be studied. Less
该项目于 1986 年开始,研究弦和/或超弦的两个基本问题:(a)弦理论是否可以作为统一时空几何和物质基本相互作用的理论,以及(b)弦理论是否为我们提供了任何合理的宇宙。我们首先问自己为什么弦被用作统一理论的模型,而不是膜等其他模型。对于任何模型作为候选模型,它必须 在其光谱中产生零质量粒子(规范玻色子和重力粒子)。我们计算了膜的卡西米尔能量,并表明如果时空维度是整数,它永远不会产生无质量粒子。除了弦之外,这应该是正确的。为了将弦限定为统一理论,必须以与几何无关的方式来表述弦的场论。我们研究了 Friedan、Yoneya 和 Witten 提出的弦的立方作用模型,然后由 Hata、Itoh、Kygo、Kunitomo 和 Okawa、Horowitz、Lykken、Rhom 和 Strominger 数学公式化。通过求解由三次作用导出的运动方程,我们证明了用非线性西格玛模型方法导出的所有共形不变背景度量场(包括扭转和膨胀)也是三次作用的经典解。这表明立方作用模型确实是一个非平凡的、独立于几何的弦场论。为了将上述思想推广到超弦,我们研究了超弦振幅的一些性质。波利亚科夫的路径积分方法在上述论证中得到了广泛的应用,该方法被应用于超弦,并表明超模和共形 Killing 旋量在规范异常抵消中发挥着重要作用。在我们的下一个项目中,超弦的这些实践是不可或缺的,我们将研究超弦的几何独立场论。较少的
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Maeno & S.Sawada: Osaka University preprint(Nucl.Phys.). OU-HET110. (1987)
前野先生
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Keiji Kikkawa;Masami Yamasaki: Progress of Theoretical Physics. 76. 1379-1389 (1986)
Keiji Kikkawa;Masami Yamasaki:理论物理学的进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Inami, H. Kanno and T. Kubota: "One-loop Path Integral of the Open Superstring." Prog. Theore. Phys.77. 26-31 (1987)
T. Inami、H. Kanno 和 T. Kubota:“开放超弦的单环路径积分”。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takeo Inami;Hiroaki Kanno;Takahiro Kubota: Progress of Theoretical Physics. 77. 26-31 (1987)
稻波武夫;菅野宏明;久保田贵宏:理论物理学的进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KIKKAWA Keiji其他文献
KIKKAWA Keiji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KIKKAWA Keiji', 18)}}的其他基金
QUANTUM TRANSITIONS IN EARLY UNIVERSE IN THE STRING THEORY WITH T-DUALITY
具有 T 对偶性的弦理论中早期宇宙的量子跃迁
- 批准号:
08640372 - 财政年份:1996
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Possible Origin of Dynamical Gauge Field
动态规范场的可能起源
- 批准号:
06640398 - 财政年份:1994
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Unified Theories of Space and Matter
空间与物质的统一理论
- 批准号:
04302015 - 财政年份:1992
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Space-Time Independent Formulation of String Theories
弦理论的时空独立表述
- 批准号:
01540247 - 财政年份:1989
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Studentship
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Continuing Grant
Enlarging the string theory landscape
扩大弦理论的前景
- 批准号:
23KF0214 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ensemble averages in string theory and the AdS/BCFT correspondence
弦理论中的系综平均值和 AdS/BCFT 对应关系
- 批准号:
23KJ1337 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Generalized dualities and compactifications in string theory
弦理论中的广义对偶性和紧化
- 批准号:
23K03391 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in String Theory and Quantum Field Theory
弦论和量子场论主题
- 批准号:
2310635 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Physical Mathematics: String Theory, Quantization and Geometry
物理数学:弦理论、量化和几何
- 批准号:
SAPIN-2018-00029 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Subatomic Physics Envelope - Individual
Development and Applications of String Theory
弦理论的发展与应用
- 批准号:
SAPIN-2017-00024 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Subatomic Physics Envelope - Individual














{{item.name}}会员




