String Theory and Statistical Many-body Systems

弦理论和统计多体系统

基本信息

  • 批准号:
    01540233
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1989
  • 资助国家:
    日本
  • 起止时间:
    1989 至 1990
  • 项目状态:
    已结题

项目摘要

In this research project, we studied using field theoretical techniques the intimatelyelated structures of string theory and statistical many-body system at criticality and obtained the following results :1. String theories can be considered as conformally invariant field theories (CFT's) on the string world sheet. A promising framework capable of describing various CFT's comprehensively is the free-field realization introduced by Feigin and Fuchs. We have succeeded in constructing such realizations for the su (n) Kac-Moody algebras and the associated parafermionic systems which are of fundamental importance.2. To clarify the relations among various string theories, it is important to study the whole set of two dimensional field theories including gravitational degree of freedom. Recently the exact solution of two dimensional quantum gravity has been obtained by the matrix model approach and moreover the same results can be reproduced by the method of topological field theories (TFT's) which are conceptually quite distinct. We have proposed a formulation of TFT's possessing conformal symmetry and found novel closed algebraic structures of interest.3. Anti-ferromagnetic (AF) long range order is considered a key concept in unraveling the high TALL_c superconductivity. We have shown that the OMICRON (3) non-linear sigma model provides the effective description of the long-distance behavior of the AF Heisenberg model and analyzed it field theoretically. Weak dependence on the three dimensionality has also been studied.4. Doped high TALL_c superconductor can be described by the t-J model. We analyzed its effective theory, the RHO^1 model, and obtained results on the phase structure, transition temperature, etc., which are in good agreement with experiments. We also found the occurrence of hole-pair condensation and proposed that this serves as the main mechanism of high TALL_c superconductivity.
在本研究项目中,我们用场论方法研究了弦理论和统计多体系统在临界态下的紧密联系结构,得到了以下结果:1.弦理论可以被认为是弦世界表上的共形不变场论。Feigin和Fuchs提出的自由场实现是一个很有前途的框架,它能够全面地描述各种CFT。我们已经成功地构造了su(n)Kac-Moody代数和相关的仿费米子系统的这种实现,这是非常重要的.为了弄清各种弦理论之间的关系,研究包括引力自由度在内的整个二维场论是很重要的。最近,二维量子引力的精确解已经通过矩阵模型方法得到,而且同样的结果可以通过概念上截然不同的拓扑场论(TFT)方法重现。我们提出了一个具有共形对称性的TFT的公式,并发现了新的封闭代数结构。反铁磁长程有序被认为是解释高TALL_c超导性的一个关键概念。我们证明了OMICRON(3)非线性σ模型对AF Heisenberg模型的长距离行为提供了有效的描述,并从理论上分析了它的场。对三维空间的弱相关性也进行了研究.掺杂的高TALL_c超导体可用t-J模型描述。我们分析了它的有效理论RHO ^1模型,得到了相结构、相变温度等方面的结果,与实验结果吻合较好。我们还发现了空穴对凝聚的存在,并认为这是高TALL_c超导性的主要机制。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
I.Ichinose and H.Yamamoto: "Finite Temperature Neel Transition in CP^<Nー1> Model" Modern.Physics Letters A. 5. 1373-1380 (1990)
I.Ichinose 和 H.Yamamoto:“CP^<N-1> 模型中的有限温度尼尔跃迁”Modern.Physics Letters A. 5. 1373-1380 (1990)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Katsushi Ito and Yoichi Kazama: "Feigin-Fuchs Representations of A^<(1)>_ Affine Lie Algebra and the Associated Parafermionic Algebra" Mod. Phys. Lett.A5. 215-224 (1990)
Katsushi Ito 和 Yoichi Kazama:“A^<(1)>_ 仿射李代数和相关的 Parafermionic 代数的 Feigin-Fuchs 表示” Mod。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Ito and Y.Kazama: "FeiginーFuchs Representation of An^^<(1)> Affine Lie Algebra and the Associated Pavafermiomz Algebra" Modern Physics Letters A. 5. 215-224 (1990)
K.Ito 和 Y.Kazama:“An^^<(1)> 仿射李代数和相关 Pavafermiomz 代数的 Feigin-Fuchs 表示” 现代物理快报 A. 5. 215-224 (1990)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisashi Yamamoto, Gen Tatara, Ikuo Ichinose and Tetsuo Matstui: "Magnetic Properties of Hubbard-Sigma Model with Three-Dimensionality" preprint UT-Komada. 90-12. (1990)
Hisashi Yamamoto、Gen Tatara、Ikuo Ichinose 和 Tetsuo Matstui:“三维 Hubbard-Sigma 模型的磁性”预印本 UT-Komada。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
I.Ichinose and T.Matsui: "Dynamics of Holes and Spins in the Hubbard tーJ Model and High Temperature Supercanductivity" Phys,Rev.B.
I.Ichinose 和 T.Matsui:“Hubbard tJ 模型中的空穴和自旋动力学以及高温超导性”Phys,Rev.B。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAZAMA Yoichi其他文献

KAZAMA Yoichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAZAMA Yoichi', 18)}}的其他基金

Studies of the dynamics of superstring and M theory and itscovariant formulation
超弦动力学和M理论及其协变公式的研究
  • 批准号:
    18540252
  • 财政年份:
    2006
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of non-perturbative dynamics in superstring theory and M theory
超弦理论和M理论中的非微扰动力学研究
  • 批准号:
    15540256
  • 财政年份:
    2003
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Non-perturbative Properties of Superstring Theory
超弦理论非微扰性质研究
  • 批准号:
    10209204
  • 财政年份:
    1998
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Research Grant
Research on induced twisted representations in conformal field theory with tensor category theory
张量范畴论共形场论中诱导扭曲表示的研究
  • 批准号:
    23KJ0540
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: New Approaches to Conformal Field Theory - Codes, Ensembles, and Complexity
NSF-BSF:共形场论的新方法 - 代码、系综和复杂性
  • 批准号:
    2310426
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Turning up the Temperature in Conformal Field Theory
提高共形场论中的温度
  • 批准号:
    567953-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Ensemble Averaging and the Anti-de Sitter/Conformal Field Theory Correspondence
系综平均和反德西特/共形场论对应
  • 批准号:
    575727-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Holography, Black Holes, and Conformal Field Theory
全息术、黑洞和共形场论
  • 批准号:
    SAPIN-2020-00047
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Subatomic Physics Envelope - Individual
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    RGPIN-2022-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Discovery Grants Program - Individual
On Conformal Field Theory and Dark Matter
论共形场论和暗物质
  • 批准号:
    SAPIN-2020-00038
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Discovery Grants Program - Individual
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    DGECR-2022-00449
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了