Development of Neuro-Intelligent Sensor and its application to quality control of whiskey aroma

神经智能传感器的研制及其在威士忌香气质量控制中的应用

基本信息

  • 批准号:
    02555087
  • 负责人:
  • 金额:
    $ 6.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
  • 财政年份:
    1990
  • 资助国家:
    日本
  • 起止时间:
    1990 至 1991
  • 项目状态:
    已结题

项目摘要

An odor sensor was developed for the application of quality control of whiskey aroma in the present study. The output patterns from plural quartz-resonator sensors with partially overlapped specificity are rcoonized by an artificial neural network in this odor sensing system.It was indispensable to discriminate closely similar aromas of whisakeys in whiskey quality control, and an odor sensor would be quite promising for that discrimination. Therefore, the research was performed for the purpose of realizing the sensor with a high identification capability. In order to raise the capability, sorption membranes suitable for identifying whiskey aromas were selected, and the data variation was reduced by improving the measurement system.In the preliminary stage, the membranes were selected among stationary phase materials for gas chromatography and cellulosic ones using a statistical method. Later, several lipid membranes, which are the components of a biological cell, were added to the mem … More brane set.The measurement system was modified as follows. Stainless steel was adopted as the material of the sample flow system to reduce the adsorption on the internal wall. A mass-flow controller was introduced to control the air flow rate and keep the aromatic vapor supply to the sensor cell constant. A thermoregulator was used to stabilize the temperature of the sample bottles and sensors so that the vapor pressure and the sensor sensitivity could be kept constant. As a result of these system modifications, the data variations of the sensors were reduced to 0.3%. After the membrane selection and the system modification, the recognition probability of whiskey aroma, which were difficult to identify before this study, was raised to more than 90%.The prototype system for an industrial use was set at a whiskey manufacturer, and the recognition probability was found almost 90% when the whiskey identification was performed. The data necessary for developint the system furthermore is now being gathered. Less
本研究开发了一种用于威士忌香气质量控制的气味传感器。该气味传感系统采用人工神经网络识别具有部分重叠特异性的多个石英谐振器传感器的输出模式。在威士忌的质量控制中,区分威士忌的相似气味是必不可少的,而气味传感器将很有希望做到这一点。因此,为实现具有高识别能力的传感器而进行研究。为了提高检测能力,选择了适合于威士忌酒香气识别的吸附膜,并通过改进检测系统减少了数据的变化。在初始阶段,用统计方法从气相色谱固定相材料和纤维素固定相材料中选择膜。后来,一些脂质膜(生物细胞的组成部分)被添加到膜中。测量系统修改如下:样品流系统采用不锈钢材料,以减少内壁吸附。引入质量流量控制器控制空气流量,保证芳香蒸汽供给传感器单元恒定。温度调节器用于稳定样品瓶和传感器的温度,使蒸汽压和传感器灵敏度保持恒定。由于这些系统的修改,传感器的数据变化减少到0.3%。经过膜选择和系统改造,将本研究之前难以识别的威士忌香气的识别概率提高到90%以上。工业用途的原型系统设置在威士忌制造商,当进行威士忌识别时,发现识别概率接近90%。目前正在收集进一步发展该系统所需的数据。少

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
中本、福田、森泉: "水晶振動子ガスセンサの出力予測法" 電子情報通信学会論文誌. J74-C-II. 450-457 (1991)
Nakamoto、Fukuda 和 Izumi Mori:“晶体振荡器气体传感器的输出预测方法”电子、信息和通信工程师学会学报 J74-C-II (1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
中本.森泉: "水晶振動子とにおい識別" 超音波Techno. 10月号. 58-61 (1990)
Mori Izumi Nakamoto:“晶体振荡器和气味识别”超声波技术 58-61(1990 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nakamoto,A.Fukuda,T.Moriizumi and Y.Asakura: "Improvement of Identification Capability in Odor Sensing System" Sensors and Actuators. 3. 221-226 (1991)
T.Nakamoto、A.Fukuda、T.Moriizumi 和 Y.Asakura:“气味传感系统识别能力的改进”传感器和执行器。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Nakamoto, A. Fukada, T. Morizumi and Y. Asakura: "Improvement of Identification Capability in an Odor Sensing System" Sensors and Actuators. 3. 221-226 (1991)
T. Nakamoto、A. Fukada、T. Morizumi 和 Y. Asakura:“气味传感系统识别能力的改进”传感器和执行器。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
森泉 豊栄(堂山他編,共著): "「バイオ素子」第3章 バイオセンサ" 丸善, 35 (1990)
丰坂森泉(堂山等编辑,合著者):“‘生物元素’第3章:生物传感器”Maruzen,35(1990)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORIZUMI Toyosaka其他文献

MORIZUMI Toyosaka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORIZUMI Toyosaka', 18)}}的其他基金

Study on New LB films with Molecular-Janction System
新型LB薄膜分子连接体系的研究
  • 批准号:
    03402032
  • 财政年份:
    1991
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
  • 批准号:
    2332060
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Continuing Grant
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
  • 批准号:
    23K11120
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
  • 批准号:
    23K10454
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
  • 批准号:
    23H03451
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了