等質複素多様体の研究
齐次复流形的研究
基本信息
- 批准号:02640083
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1990
- 资助国家:日本
- 起止时间:1990 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
交付申請書に記した研究実施計画のうち、「等質ケ-ラ-多様体に推移的に作用するリ-群とそのリ-環の構造の解明」については、以下に述べるようにかなりの成果が得られた。1.等質ケ-ラ-多様体の正則等長変換全体のなすリ-群のリ-環は、regularケ-ラ-代数、すなわち可換ケ-ラ-イデアルとjー代数の構造をもつケ-ラ-部分代数との直交半直積である。2.一般の推移的に作用する正則等長変換群のリ-環は、regularケ-ラ-代数のmodificationである。以上のことから等質ケ-ラ-多様体の正則等長変換群の構造は、本質的にはjー代数とその複素ベクトル空間へのシンプレクテイワク表現を調べればわかることになる。更に、3.jー代数については、その極大idempotentの一意性等が従来の結果より一般化された形で証明された.これらの成果については、近い将来論文として公表するつもりであるが、その概要は「等質ケ-ラ-多様体における基本予想の解決」と題した論説の中に記して賞いた。またこの方面の研究実施にあたっては、土井公二、石井秀則とリ-群、リ-環及び対称空間について討論を行なった。研究実施計画に記した「不変なケ-ラ-計量」の考察については、藤村茂芳と討論を行い、半単純リ-群の等質ケ-ラ-多様体の分類が従来から知られているものと少し別の形で可能であることがわかり、現在この方面の研究を進めている。また、「解析学及び代数学的立場からの等質複素多様体のファイバ-化」に関連して、荒井正治、山田修宣と討論を行った。
In the submission of the application, it is noted that the implementation plan of the study,"the role of iso-mass multi-body transition, the structure of multi-group and multi-ring", and the results described below have been obtained. 1. The regular isometrical transformation of isometric-class-polyhedrons is composed of a set of isometric-class-groups, regular isometric-class-algebras, isometric-class-commutative isometric-class-algebras, and orthogonal semidirect products of isometric-class-partial algebras. 2. The general function of transition is regular isometry, regular isometry and modification. The structure and essence of the regular isobaric transformation group of the isobaric-isobaric transformation group of the isobaric-isobaric transformation group of the isobaric-isobaric transformation group of the isobaric transformation group of In addition, 3.j algebras are proved to be generalized in the form of a single meaning, a maximum idepotent, etc. The results of this paper are summarized as follows: "The basic solution of iso-quality multi-species". The research on this aspect is carried out in the discussion of the space between groups, rings and pairs, Koji Doi and Hideori Ishii. In the implementation plan of the study, we will note the investigation of "non-uniform-rate-measurement" and discuss the implementation of semi-pure-rate-group equivalence, classification of multi-species, and further research on this aspect. The discussion on the relationship between the standpoint of analysis and algebra, Masaharu Arai, and Shuobu Yamada
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
荒井 正治: "On Nonーreal Eigenvalues of Schro^^¨diger Operators in a Weighted Hilbert Space" Publ.RIMS Kyoto University.
Masaharu Arai:《On Non-real Eigenvalues of Schro^^¡diger Operators in a Weighted Hilbert Space》Publ.RIMS 京都大学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤村 茂芳: "Indefininte Ka^^¨hler metrics of constant holomorphic sectional curvature" J.Math.Kyoto University. 30. 493-516 (1990)
Shigeyoshi Fujimura:“恒定全纯截面曲率的不定 Ka^^ehler 度量”J.Math.Kyoto University。30. 493-516 (1990)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
中島 和文: "Homogeneons Ka^^¨hler manifolds of nonーdegenerate Ricci curvature" J.Math.Soc.Japan. 42. 476-494 (1990)
Kazufumi Nakajima:“非简并 Ricci 曲率的同质子 Ka^^ehler 流形”J.Math.Soc.Japan 42. 476-494 (1990)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
中島 和文其他文献
中島 和文的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('中島 和文', 18)}}的其他基金
非コンパクトな複素多様体についての研究
非紧复流形研究
- 批准号:
X00210----374016 - 财政年份:1978
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
非コンパクトな複素多様体についての研究
非紧复流形研究
- 批准号:
X00210----074131 - 财政年份:1975
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
Native Mass Spectrometry Guided Structural Biology Center
天然质谱引导结构生物学中心
- 批准号:
10629935 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Development of a splicing modulator compound for familial dysautonomia
开发用于家族性自主神经功能障碍的剪接调节剂化合物
- 批准号:
10680719 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Identifying differences in dynamics and residual structure of intrinsically disordered domains between monomer and fibers: using alpha-synuclein as a model
识别单体和纤维之间本质无序域的动力学和残余结构的差异:使用α-突触核蛋白作为模型
- 批准号:
10607325 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Structural Biology and Biophysics of Alpha-Synuclein Fibrils by Solid-State NMR
通过固态核磁共振研究 α-突触核蛋白原纤维的结构生物学和生物物理学
- 批准号:
10605819 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
A synthetic biology approach for tau post-translational modifications in AD
AD 中 tau 翻译后修饰的合成生物学方法
- 批准号:
10739891 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Structure meets function for OATP1B1, a transporter involved in the uptake of endogenous and xenobiotic materials and drugs
OATP1B1 的结构与功能相结合,OATP1B1 是一种参与内源性和外源性物质和药物摄取的转运蛋白
- 批准号:
10638284 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Development of positive TMEM97 modulators for treating neuropathic pain
开发用于治疗神经性疼痛的正 TMEM97 调节剂
- 批准号:
10642506 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别: