Statistical Methods for the Seasonal Adjustment
季节调整的统计方法
基本信息
- 批准号:04045056
- 负责人:
- 金额:$ 3.52万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for international Scientific Research
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topics covered in this study are as follows :1. Use of Information Criterion EIC : Use of Extended Information Criterion EIC for the seasonal adjustment is discussed. It is demonstrated that the proposed resampling scheme shows a a natural tendency for chosing better trend for the out-of-sample forcasting.2. Multivariate Economic Series Analysis : This study intended to analyze the role of sesonal adjustment procedure as a preprocessing technique for the multivariate timeseries analysis. It is reveald that there is danger of losing information about the mutual relationship among related series, when each series is adjusted for the seasonality and detrended separately.3. X-11 type model : We tried to reconstruct the X-11 type trend estimate by the modern model-based seasonal adjustment method. We introduced a bias correction method which is to be used with conventional additive type model-based trend estimate. We also introduced a new model which has the X-11 type trend for multiplicati … More ve series. With the new model we can estimate the X-11 type trend directly from the data.4. Monte Carlo filtering : A Monte Carlo filtering and smoothing methods have been developed for state estimation of high-dimensional nonlinear non-Gaussian state space models. Based on this methods, various models for seasonal adjustment are considered, e. g. , (1) detection of jumps of trend or seasonal components (2) treatment of outliers (3) estimation of multiplicative model (4) Baysian estimation of hyper-parametrs.5. Genetic Algoritm : We investigate the relationships between the Genetic Algoritm and Monte Calro Filter. The major objective of this paper is to cast the Genetic Algorithm into the Baysian framework by its interpretation from a viewpoint of the Monte Carlo filter.6. Improve of DECOMP : A procedure for extracting 'stable' stationary autoregressive component is proposed. in which we consider a numerical optimization with a restriction in frequency domain. Further research remained undone, however. especially in modeling jump and kink in trend.7. Co-integration model : State-space representation for co-integration model is proposed which enables us to estimate the unknown parameters in one-step. while traditional Engle-Granger's method needs two steps.8. X-12-REGARIMA : To improve its forcasting ability. AIC based regression model selection procedure is incorporated in the traditional moving-avarage based X-11 seasonal adjustment program. Less
本研究的主要内容如下:1.使用信息准则EIC:使用扩展信息准则EIC的季节调整进行了讨论。结果表明,该方案在样本外预测中具有选择趋势的自然倾向.多元经济序列分析:本研究旨在分析季节调整程序作为多元时间序列分析的预处理技术的作用。揭示了在对各序列分别进行季节性调整和趋势去除时,存在丢失相关序列间相互关系信息的危险. X-11型模型:我们尝试用基于现代模型的季节调整方法重建X-11型趋势估计。我们介绍了一种偏差校正方法,该方法将与传统的基于加性模型的趋势估计一起使用。我们还介绍了一种新的模式,它具有X-11型的趋势,为乘法, ...更多信息 ve系列。利用新的模型,我们可以直接从数据中估计X-11类型的趋势.蒙特卡罗滤波:提出了一种用于高维非线性非高斯状态空间模型状态估计的蒙特卡罗滤波和平滑方法。在此基础上,考虑了季节调整的各种模型,如:G.(2)异常值的处理(3)乘性模型的估计(4)超参数的贝叶斯估计。遗传算法:研究了遗传算法与蒙特卡洛滤波器的关系。本文的主要目的是通过从蒙特卡罗滤波器的角度对遗传算法进行解释,将遗传算法转换为贝叶斯框架.对DECOMP算法的改进:提出了一种提取平稳自回归分量的方法。其中考虑了频域中带约束数值优化问题。然而,进一步的研究仍然没有完成。特别是在造型跳跃和扭结的趋势.协整模型:提出了协整模型的状态空间表示,使我们能够一步估计未知参数。而传统的Engle-Granger方法需要两个步骤. X-12-REGARIMA:提高其预测能力。基于AIC的回归模型选择程序被纳入传统的基于移动平均的X-11季节调整程序。少
项目成果
期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
赤池弘次・北川源四郎編: "時系列解析の実験I、統計科学選書" 朝倉書店, 218 (1994)
赤池博二、北川源四郎主编:《时间序列分析实验I,统计科学书籍选》朝仓书店,218(1994)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Kitagawa: Kyoritsu Shuppan Co., Ltd.Dictionary of algorithms, Shimanouchi etc.eds., 951 (1994)
G.北川:Kyoritsu Shuppan Co., Ltd.Dictionary of Algorithms, Shimanouchi et.eds., 951 (1994)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
川崎能典: "Johansenの共和分検定について" 金融研究. 第11巻. 99-120 (1992)
川崎义典:“关于约翰森的协整检验”金融研究卷 11. 99-120 (1992)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ozaki.T.and Thomson.P.J.: "A dynamical Systems Approach to X-11 type Scasonal Adjustment" Research Memo.Vol.498. 1-32 (1994)
Ozaki.T. 和 Thomson.P.J.:“X-11 型事件调整的动力系统方法”研究备忘录第 498 卷。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Bell.W.and Wilcox.D.W.: "The Effect of Stampling Error on the Time Series Behavior of Consumption Data" J.Econometrics. Vol.55. 235-265 (1993)
Bell.W. 和 Wilcox.D.W.:“抽样误差对消费数据时间序列行为的影响”J.Econometrics。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIGURO Makio其他文献
ISHIGURO Makio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIGURO Makio', 18)}}的其他基金
Physiological and mathematical modeling of periodic synchronized neural firing phenomenon by data driven approach
通过数据驱动方法对周期性同步神经放电现象进行生理和数学建模
- 批准号:
24300108 - 财政年份:2012
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of Statistical Formulation of Problems
问题统计表述的研究
- 批准号:
23650148 - 财政年份:2011
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study of Rhythm Formation Mechanism in Brainstem by Statistical Analysis of Spatio-Temporal Voltage Imaging Data
时空电压成像数据统计分析研究脑干节律形成机制
- 批准号:
19200021 - 财政年份:2007
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Time Series Analysis of Physical/Mental process in Human Brain
人脑生理/心理过程的时间序列分析
- 批准号:
10480052 - 财政年份:1998
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Study in Analysis Method of Nonstationary Signals
非平稳信号分析方法研究
- 批准号:
08650455 - 财政年份:1996
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Imaging from Interofermetric Data by Bayesian Modeling
通过贝叶斯建模对 Interofermetric 数据进行成像
- 批准号:
63540183 - 财政年份:1988
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Towards Explainable Multi-source Multivariate Time-series Analysis
迈向可解释的多源多元时间序列分析
- 批准号:
DE200101610 - 财政年份:2020
- 资助金额:
$ 3.52万 - 项目类别:
Discovery Early Career Researcher Award
Elucidation of acute toxicity of drugs by real-time metabolome analysis and multivariate time-series analysis
通过实时代谢组分析和多变量时间序列分析阐明药物的急性毒性
- 批准号:
18K10122 - 财政年份:2018
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High Dimensional Models for Multivariate Time Series Analysis
用于多元时间序列分析的高维模型
- 批准号:
EP/I005250/1 - 财政年份:2010
- 资助金额:
$ 3.52万 - 项目类别:
Fellowship
Multivariate Time Series Analysis and Forecasting of TrafficImpacts and Trip Tables
交通影响和行程表的多元时间序列分析和预测
- 批准号:
8303342 - 财政年份:1983
- 资助金额:
$ 3.52万 - 项目类别:
Continuing Grant