Analytics to predict anaerobic codigestion & downstream process performance

预测厌氧共消化的分析

基本信息

  • 批准号:
    LP150100304
  • 负责人:
  • 金额:
    $ 32.65万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Linkage Projects
  • 财政年份:
    2016
  • 资助国家:
    澳大利亚
  • 起止时间:
    2016-06-16 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop management approaches to enable the use of anaerobic co-digestion — the conversion of organic wastes and wastewater sludge to biogas for electricity production. Anaerobic co-digestion has the potential to bring significant economic savings to water stakeholders and environmental benefits to communities. However, full-scale deployment faces fundamental challenges in terms of managing impacts on downstream processes (e.g. odour, dewaterability, biogas quality, and nutrient build-up). The analytical framework and analytics tool to be developed in this project by an interdisciplinary team with expertise in process engineering, biochemistry, analytical chemistry and analytics, is expected to enable water stakeholders to cost-effectively manage these impacts and thus realise the benefits of co-digestion.
该项目旨在开发管理方法,以实现厌氧共消化-将有机废物和废水污泥转化为沼气用于发电。厌氧共消化有可能为水利益相关者带来显著的经济节约,并为社区带来环境效益。然而,全面部署在管理对下游过程的影响方面面临着根本性的挑战(例如气味、脱水性、沼气质量和营养积累)。该项目的分析框架和分析工具将由一个具有过程工程、生物化学、分析化学和分析专业知识的跨学科团队开发,预计将使水利益相关者能够经济有效地管理这些影响,从而实现共消化的好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof Long Nghiem其他文献

Prof Long Nghiem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof Long Nghiem', 18)}}的其他基金

Novel high retention membrane bioreactors for sustainable water reuse: Process performance and optimization
用于可持续水再利用的新型高截留膜生物反应器:工艺性能和优化
  • 批准号:
    DP140103864
  • 财政年份:
    2014
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Discovery Projects
Optimising nanofiltration and reverse osmosis filtration processes for water recycling: effects of fouling and chemical cleaning on trace contaminant removal
优化水回收的纳滤和反渗透过滤工艺:污垢和化学清洗对痕量污染物去除的影响
  • 批准号:
    DP0985389
  • 财政年份:
    2009
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Discovery Projects
Assessment and optimisation of N-nitrosamine rejection by reverse osmosis for planned potable water recycling applications
针对计划的饮用水回收应用,通过反渗透去除 N-亚硝胺的评估和优化
  • 批准号:
    LP0990705
  • 财政年份:
    2009
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Linkage Projects

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Standard Grant
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Fellowship
Active one health surveillance in LMICs to monitor and predict Antimicrobial Resistance Using Metagenomics (ALARUM)
在中低收入国家中开展主动单一健康监测,利用宏基因组学 (ALARUM) 监测和预测抗菌药物耐药性
  • 批准号:
    MR/Y034287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Research Grant
Inter-brain synchrony analysis in teleoperated collaborative social tasks to predict collective performance
远程操作协作社交任务中的脑间同步分析以预测集体表现
  • 批准号:
    24K17253
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
  • 批准号:
    24K04051
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sensory and bioengineering approaches to predict hearing abilities in fish
预测鱼类听力的感官和生物工程方法
  • 批准号:
    DE240100188
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Discovery Early Career Researcher Award
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
  • 批准号:
    2902083
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Studentship
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y00180X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Research Grant
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
  • 批准号:
    MR/Y503472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了