Magnetization measurement by use of non-destructive magnet up to 100 Tesla

使用高达 100 特斯拉的无损磁铁进行磁化测量

基本信息

  • 批准号:
    07454082
  • 负责人:
  • 金额:
    $ 4.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1997
  • 项目状态:
    已结题

项目摘要

In first year, we pointed out two problems when one makes high field magnets. One problem is making coil tight by epoxy resign is necessary to obtain high field and the other is reinforcement by use of maraging steel from outside increases an effective tensile strength of the magnet wire. Taking these points into consideration, we can produce 60T-field with diameter of 20mm by winding Cu-wire.Second year, we tested the tensile sterength dependence of the maximum field. As a result, we can achieve at 71T within a diameter of 18mm by changing Cu-wire into Cu-Ag-wire.The last year, we checked reproducibility and durability of the 71T-magnet and found that the magnet can produce successive 8 shots of 69T-field. Following this result, we carried out magnetization measurement at liquid helium temperature up to 65T.We set an additive coil in the 71T-magnet to obtain higher magnetic field. Obtained maximum field is 77T with 13.5mm diameter. From our analysis, 77T should be separated into 8T of inner coil and 69T of outer magnet. This is not efficient for outer magnet. Supposed that we cannot neglect an effect from inner coil on outer one, we should obtain higher field by reinforcing inner coil with maraging steel. Obtained maximum field is 80.3T with 10.5mm diameter and this is world record. In this case, outer magnet produces 71T-field and this result can be regarded as an efficient case. Following the results, reinforcement of each coil by maraging steel can realizes 100T-magnet and the subject of this study will be attained in very near future.
第一年,我们指出了制作强磁场磁铁时存在的两个问题。一个问题是通过环氧树脂使线圈紧密以获得高磁场是必要的,另一个问题是通过使用外部马氏体时效钢来增强电磁线的有效拉伸强度。考虑到这些点,我们可以通过缠绕铜线产生直径为20mm的60T磁场。第二年,我们测试了最大磁场的拉伸强度依赖性。因此,通过将铜线改为铜银线,我们可以在直径18mm内实现71T。去年,我们检查了71T磁体的再现性和耐用性,发现该磁体可以连续产生8次69T磁场。根据这一结果,我们在液氦温度高达65T的情况下进行了磁化测量。我们在71T磁体中设置了附加线圈以获得更高的磁场。获得的最大视场为7​​7T,直径为13.5mm。根据我们的分析,77T应该分为内线圈8T和外磁体69T。这对于外磁体来说效率不高。假设我们不能忽略内线圈对外线圈的影响,我们应该通过用马氏体时效钢加固内线圈来获得更高的磁场。获得的最大视场为80.3T,直径10.5mm,这是世界纪录。在这种情况下,外磁体产生71T磁场,这个结果可以被认为是一个有效的情况。根据结果​​,用马氏体时效钢加固每个线圈可以实现100T磁体,并且本研究的主题将在不久的将来实现。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Fukuda: "Negative temperature dependenceof electrical resistivity in Ti-Ni alloys" Physica B. 237-238. 609-611 (1997)
T.Fukuda:“Ti-Ni 合金中电阻率的负温度依赖性”Physica B. 237-238。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Takeuchi: "Coupled spin-lattics transition in U_2Rh_3Si_5 : Thermal expansions and magnetization" Phys.Rev.B. 56. 10778-10781 (1997)
T.Takeuchi:“U_2Rh_3Si_5 中的耦合自旋晶格转变:热膨胀和磁化”Phys.Rev.B。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Sugiyama: "Metamagnetic magnetization in DyCu_2" Physica B. 230-232. 748-751 (1997)
K.Sugiyama:“DyCu_2 中的变磁磁化”Physica B. 230-232。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Takeuchi: "Coupled spin-lattice transition in U_2Rh_3Si_5 : Thermal expansions and magnetization" Phys.Rev.B. 56. 10778-10781 (1997)
T.Takeuchi:“U_2Rh_3Si_5 中的耦合自旋晶格转变:热膨胀和磁化”Phys.Rev.B。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Settai: "Single crystal growth and magnetic properties of CeRh_2Si_2" J.Phys.Soc.Jpn.66. 2260-2263 (1997)
R.Settai:“CeRh_2Si_2 的单晶生长和磁性能”J.Phys.Soc.Jpn.66。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KINDO Koichi其他文献

KINDO Koichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KINDO Koichi', 18)}}的其他基金

Precise Measurements in the Non-destructive 100 Tesla region for Solid State Physics
固体物理领域无损 100 特斯拉区域的精确测量
  • 批准号:
    17072004
  • 财政年份:
    2005
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Study on Quantum Phase Transition of Magnetic Materials induced by Very High Field
甚强场诱导磁性材料量子相变研究
  • 批准号:
    13130203
  • 财政年份:
    2001
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
DEVELOPMENT OF METHOD FOR MAGNETIZATION MEASUREMENT IN PULSED HIGH MAGNETIC FIELD COMBINED WITH HIGH PRESSURE AND LOW TEMPERATURES
高压低温相结合的脉冲强磁场磁化测量方法的研制
  • 批准号:
    12440102
  • 财政年份:
    2000
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Development of aluminum stabilized HTS coils for next-generation magnets with high radiation resistance and high magnetic field
开发用于下一代高抗辐射和高磁场磁体的铝稳定高温超导线圈
  • 批准号:
    23H03665
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
National High Magnetic Field Laboratory Renewal 2023-2027
国家强磁场实验室更新2023-2027
  • 批准号:
    2128556
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Cooperative Agreement
Frontier of high-magnetic field science through the co-development of thermodynamic measurement techniques
通过热力学测量技术的共同开发强磁场科学的前沿
  • 批准号:
    23KK0052
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Visualization of pair density waves in field-tolerant superconducting states with an ultra-low-temperature and in-plane high magnetic field STM
利用超低温面内高磁场 STM 实现耐场超导状态下的电子对密度波可视化
  • 批准号:
    23H01848
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Odd-parity multipole orderings of CeCoSi under high magnetic field
高磁场下 CeCoSi 的奇宇称多极有序性
  • 批准号:
    23KJ0502
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Current Status and Future Direction of High Magnetic Field Science in the United States
美国强磁场科学的现状和未来方向
  • 批准号:
    2234156
  • 财政年份:
    2022
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Continuing Grant
A cutting-edge radio-frequency coil for structural and functional MRI of the primate brain at ultra-high magnetic field
用于超高磁场下灵长类大脑结构和功能 MRI 的尖端射频线圈
  • 批准号:
    RTI-2023-00553
  • 财政年份:
    2022
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Research Tools and Instruments
Mid-scale RI-2: A first-of-its-kind X-ray facility for new science at the high magnetic field frontier
中型 RI-2:用于高磁场前沿新科学的首个 X 射线设备
  • 批准号:
    1946998
  • 财政年份:
    2021
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Cooperative Agreement
The study on the thermal conductivity of quantum spin magnets under pulse high magnetic field
脉冲强磁场下量子自旋磁体的热导率研究
  • 批准号:
    21K20347
  • 财政年份:
    2021
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Direct measurement of ultra high magnetic field by using spin polarized neutron
利用自旋极化中子直接测量超高磁场
  • 批准号:
    20K20922
  • 财政年份:
    2020
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了