Numerical Study of the Ground States of the Low Dimensional Quantum Heisenberg Models
低维量子海森堡模型基态的数值研究
基本信息
- 批准号:07640503
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this 3-year project, the low dimensional quantum Heiscnberg models with various spatial structures have been investigated using numerical methods. The main results are summarized as follows :1.The critical behavior of the ladder quantum Heisenberg model is studied in the limit of weak interchain interaction using the density matrix renormalization group (DMRG) method.2.The algorithm of the DMRG method for one-dimensional random quantum systems is developed. The existence of the random singlet phase is verified in the random antiferromagnetic quantum Heisenberg model. The application to the quasi-periodic systems is in progress.3.The low energy behavior of the one-dimensional random quantum antiferromagnetic Heisenberg model in the presence of the ferromagnetic bonds is investigated using the DMRG method. The temperature dependence of the specific heat and magnetic susceptibility is discussed.4.The one-dimensional random quantum antiferromagnet with bond alternation is studied using … More the DMRG method. the bond-alternation-dependence of the grund state energy, gap distribution and the string order is obtained. It is shown that the spin-Peierls instability is suppressed by randomness.5.The finite temperature magnetization process of the one-dimensional ferromagnetic-antiferromagnetic alternating Heisenberg model is investigated using the quantum Monte Carlo method and the mapping onto the one-dimensional boson system.6.The ground state of the isotropic one-dimsnaional Heisenberg model with 2 and 4-fold spatial periodicity is investigated using the exact numerical diagoualization method. The phase diagram and the critical exponents are calculated. The relationship between the dimerization transition of the spin-1/2 antiferromagnetic Heisenberg chain and the Haldane-dimer transition of the spin-1 antiferromagnetic Heisenberg chain is clarified. The study of the effect of the anisotropy and magnetic field is in progress.7.The effect of frustration on the ground state and excitation spectrum of the spin-1/2 bilayr quantum antiferromagnetic Heisenberg model is studied using the modified spin wave method and the dimer expansion method. It is found that the spin gap state survives down to the limit of weak interlayr coupling. Less
在这个为期三年的项目中,我们用数值方法研究了具有各种空间结构的低维量子Heiscnberg模型。主要结果如下:1.利用密度矩阵重整化群(DMRG)方法研究了链间弱相互作用下梯形量子海森堡模型的临界行为; 2.发展了一维随机量子系统的DMRG算法。在随机反铁磁量子海森堡模型中,证实了随机单态相的存在。利用DMRG方法研究了一维随机量子反铁磁Heisenberg模型在铁磁键存在下的低能行为。讨论了比热和磁化率随温度的变化关系。4.利用量子化学方法研究了一维随机量子反铁磁体 ...更多信息 DMRG方法。得到了基态能量、能隙分布和弦序与键交替的关系。5.利用量子Monte Carlo方法和一维玻色子系统的映射,研究了一维铁磁-反铁磁交替海森堡模型的有限温度磁化过程. 6.研究了具有2和4-自旋的各向同性一维海森堡模型的基态,得到了该模型的基态磁化强度随温度的变化规律.利用精确数值对角化方法研究了褶皱的空间周期性。计算了相图和临界指数。阐明了自旋为1/2的反铁磁海森堡链的二聚化跃迁与自旋为1的反铁磁海森堡链的Haldane-二聚体跃迁之间的关系。利用改进的自旋波方法和二聚体展开方法研究了阻挫对自旋1/2双层量子反铁磁Heisenberg模型基态和激发谱的影响。结果表明,自旋能隙态在弱层间耦合下仍然存在。少
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Hida: "Density matrix renormalization group method for random quantun one-dimensional systems -Application to the random spin-1/2 antiferromagnetic Heisenberg chain-" Journal of the Physical Society of Japan. 65. 895-898 (1996)
K.Hida:“随机量子一维系统的密度矩阵重整化群方法 - 应用到随机自旋 - 1/2 反铁磁海森堡链 -” 日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Hida: "Density Matrix Renormalization Group Study of the Sin-1/2 Heisenberg Ladder with Antiferromagnetic Legs and Ferromagnetic Rungs" Joural of the Physical Society of Japan. 64. 4896-4900 (1995)
K. Hida:“具有反铁磁腿和铁磁横档的 Sin-1/2 海森堡梯的密度矩阵重整化组研究”日本物理学会期刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Hida: "Density matrix renormalization group study of the spin 1/2 Heisenerg ladder with antiferromagnetic legs and ferromagnetic rungs" Journal of the Physical Society of Japan. 64. 4896-4900 (1995)
K.Hida:“具有反铁磁腿和铁磁横档的自旋 1/2 海森格梯子的密度矩阵重整化组研究”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Hida: "Density matrix renormalization group method for random quantum one-dimensional systems-Application to the random spin-1/2 antiferromagnetic Heisenberg chain" Journal of the Physical Society of Japan. 65-4. 895-898 (1996)
K.Hida:“随机量子一维系统的密度矩阵重整化群方法-在随机自旋-1/2反铁磁海森堡链中的应用”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Hida: "Density matrix renormalization group study of the spin-1/2 Heisenbergladder with antiferromagnetic legs and ferromagnetic rungs" Journal of the Physical Society of Japan. 64-12. 4896-4900 (1995)
K.Hida:“具有反铁磁腿和铁磁横档的自旋 1/2 海森堡梯的密度矩阵重整化组研究”日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIDA Kazuo其他文献
HIDA Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIDA Kazuo', 18)}}的其他基金
Theoretical studies of the novel magnetic orders emergent from quantum spin liquids
量子自旋液体中出现的新型磁序的理论研究
- 批准号:
21540379 - 财政年份:2009
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Studies of Low Dimensional Quantum Magnets with Spatial Structures
具有空间结构的低维量子磁体的理论研究
- 批准号:
14540350 - 财政年份:2002
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Studies of Low Dimensional Quantum Magnets with Spatial Structures
具有空间结构的低维量子磁体的理论研究
- 批准号:
11640366 - 财政年份:1999
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
CAREER: The effects of spatial structure and heterogeneity on local adaptation, diversification, and dispersal evolution: Experimental tests and statistical models
职业:空间结构和异质性对局部适应、多样化和分散进化的影响:实验测试和统计模型
- 批准号:
2239197 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Continuing Grant
Analysis of the impact of remoteness on transportation systems and urban spatial structure and evaluation of social welfare
偏远对交通系统和城市空间结构的影响分析及社会福利评价
- 批准号:
23H01525 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Predicting the Spatial Structure of Proteins by a Strongly Correlated Neural Network
通过强相关神经网络预测蛋白质的空间结构
- 批准号:
558765-2021 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Biofilm Spatial Structure in the Transition from Health to Periodontal Disease
从健康向牙周病转变的生物膜空间结构
- 批准号:
10674685 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
From pattern to function: eco-evolutionary representations of complex spatial structure for the new era of spatial biology
从模式到功能:空间生物学新时代复杂空间结构的生态进化表征
- 批准号:
10501428 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Biofilm Spatial Structure in the Transition from Health to Periodontal Disease
从健康向牙周病转变的生物膜空间结构
- 批准号:
10334784 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
From pattern to function: eco-evolutionary representations of complex spatial structure for the new era of spatial biology
从模式到功能:空间生物学新时代复杂空间结构的生态进化表征
- 批准号:
10710177 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Phylogenetic and demographic analyses of grassland butterflies to reveal spatial structure of conservation units and the significance of grasslands for conservation
草原蝴蝶的系统发育和种群分析,揭示保护单位的空间结构和草原的保护意义
- 批准号:
21H02221 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developing a multi-layer network and spatial structure optimization model for simultaneous provision of forest ecosystem functions
开发同时提供森林生态系统功能的多层网络和空间结构优化模型
- 批准号:
21K12366 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using adult Chinook Salmon diets to understand spatial structure in forage fish communities
利用成年奇努克鲑鱼饮食来了解饲料鱼群落的空间结构
- 批准号:
563968-2021 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




