Quantum-group Theoretical Extension of Rotation Group・Symmetric Group and Its Application to Many-body Problems

旋转群·对称群的量子群理论推广及其在多体问题中的应用

基本信息

  • 批准号:
    07640525
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1997
  • 项目状态:
    已结题

项目摘要

Wigner-Racah algebras on angular momentum are extended to quantum (q-) group algebras so that the tensors (physical quantities) as well as the generators should be transformed in q-covariant way according to coordinate transformation in q-space. This formalism suggests application to many-body theory in nuclear physics. New q-deformation is investigated also on symmetric group characters. Main results are summarized as follows :Systematic q-extension of Boson/Fermion creation-annihilation operators.New relationship is found between q-extended 3nj symbol of the first kind (which the author exploited) and Yang-Baxter relation of the face model.Remarkably simply expressions are obtained for the first and the second differential coefficients by q at q*1 of various q-functions such as q-Clebsch-Gordan (q-CG) and q-Racah coefficients. It leads to new systematic finding of novel identities on 3nj symbols.A new type of q-deformed symmetric group characters is found for Sn with n<less than or equal>5. This q-extension, which is based on a physical model, is essentially different from usual q-characters inherent to Hecke alPossibilities are found to use q-CG coefficients, which satisfy the same types of orthogonalities as those of SU (2), as transformation coefficients in helicity representation, pseudo LS coupling, etc.of the usual formalism.
将角动量上的Wigner-Racah代数推广到量子(q-)群代数中,使张量(物理量)和生成子根据q空间中的坐标变换进行q协变变换。这种形式主义建议应用于核物理中的多体理论。在对称群特征上研究了新的q-变形。主要研究结果如下:玻色子/费米子产生湮灭算子的系统q扩展。在第一类q-扩展3nj符号(作者利用的)与人脸模型的Yang-Baxter关系之间发现了新的关系。对于各种q函数,如q- clebsch - gordan (q- cg)和q- racah系数,通过q在q*1处得到了一阶和二阶微分系数的非常简单的表达式。这导致了对3nj符号新身份的系统发现。对于n<小于等于bbb5的Sn,发现了一类新的q变形对称群字符。这种基于物理模型的q-扩展与Hecke固有的q-字符有本质上的不同。我们发现了使用q-CG系数作为通常形式化的螺旋表示、伪LS耦合等变换系数的可能性,这些系数满足与SU(2)相同的正交性类型。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Nomura: "Racah coefficieuts in g-couariant formalisn" Proceeding of lnternational Hutsulian Workshop (Rakhiv,1995). (1998)
M.Nomura:“g-couariant 形式化中的 Racah coefficieuts”国际 Hutsulian 研讨会论文集(Rakhiv,1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
野村 正雄: "Covauiant g-Algebras -As Extended Wiger Racah Algebras-" (交渉中), 500 (1998)
Masao Nomura:“Covauiant g-Algebras -As Extended Wiger Racah Algebras-”(正在协商中),500 (1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NOMURA Masao其他文献

NOMURA Masao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NOMURA Masao', 18)}}的其他基金

Global Cycle of Boron Isotopes in Modern and Fossil Marine Carbonates and Carbon Minerals
现代和化石海洋碳酸盐和碳矿物中硼同位素的全球循环
  • 批准号:
    09640580
  • 财政年份:
    1997
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extension of quantum theory of angular momentum and Yang-Baxter relations
角动量量子理论和杨-巴克斯特关系的推广
  • 批准号:
    03804020
  • 财政年份:
    1991
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了