Symmetries in topology and algebra
拓扑和代数中的对称性
基本信息
- 批准号:527329998
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project proposal is about cohomological and homotopical invariants of certain groups of symmetries appearing in topology and algebra, and in particular their interaction. The main focus is on mapping class groups of surfaces and symplectic groups over the integers. These groups are related by a natural homomorphism, and one aspect of this proposal is to study the induced map on (stable) cohomology with finite coefficients. A combination of a number of results says that this is equivalently described by studying the map induced on cohomology of a map $\alpha$ of spaces associated to the spectra MTSO(2) and GW^{-s}(Z) - the Thom spectrum of the negative of the universal bundle over BSO(2) and the antisymmetric (aka symplectic) Grothendieck--Witt spectrum of the integers. These spaces also carry interesting higher homotopy groups (in contrast to the classifying spaces of the above mentioned symmetry groups) and another aspect of this proposal is to compare these homotopy groups via the above mentioned map $\alpha$. The proposal consists of several individual milestones, for instance that $\alpha$ is such that one obtains an infinite family of elements of degree $8i-3$ in the stable mod 2 cohomology of mapping class group, which should be studied in more detail, but also to calculate the effect of $\alpha$ on homotopy groups (modulo torsion) via its relation to the signature homomorphism on MTSO(2). Several variants of such questions arise naturally, like studying the spin mapping class group and its relation to the quadratic symplectic group, or to study higher dimensional analogs where surfaces are replaced by suitable high dimensional manifolds.
这个专题计划是关于拓扑学和代数学中出现的某些对称群的上同调和同伦不变量,特别是它们之间的相互作用。主要的重点是映射类群的曲面和辛群的整数。这些群通过一个自然同态联系在一起,这个建议的一个方面是研究有限系数(稳定)上同调的诱导映射。一系列结果的组合表明,这是等价描述通过研究映射$\alpha$的空间的上同调诱导的映射MTSO(2)和GW^{-s}(Z)-BSO(2)上的泛丛的负的Thom谱和整数的反对称(又名辛)Grothendieck-Witt谱。这些空间也带有有趣的高阶同伦群(与上面提到的对称群的分类空间相反),这个建议的另一个方面是通过上面提到的映射$\alpha$比较这些同伦群。该提案由几个单独的里程碑组成,例如,$\alpha$使得在映射类群的稳定模2上同调中获得一个次数为8i-3$的元素的无限族,这应该被更详细地研究,但也要通过它与MTSO(2)上的签名同态的关系来计算$\alpha$对同伦群(模挠)的影响。这些问题的几个变体自然出现,如研究自旋映射类群及其与二次辛群的关系,或研究高维类似物,其中表面被适当的高维流形取代。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Markus Land其他文献
Professor Dr. Markus Land的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Markus Land', 18)}}的其他基金
New methods in algebraic K-theory
代数 K 理论的新方法
- 批准号:
424239956 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Fellowships
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Domain理论与拓扑学研究
- 批准号:60473009
- 批准年份:2004
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
FET: SMALL: Quantum algorithms and complexity for quantum algebra and topology
FET:小:量子算法以及量子代数和拓扑的复杂性
- 批准号:
2330130 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2203785 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
- 批准号:
EP/W007509/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
- 批准号:
2230159 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
- 批准号:
2223126 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




