Approximation Algorithms with High Performance Based on Semidefinite Programming

基于半定规划的高性能逼近算法

基本信息

  • 批准号:
    07680370
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1997
  • 项目状态:
    已结题

项目摘要

The objective of this research is , surveying recent researches on approximation algorithms with high performance based on the semidefinite programming technique, investigating its usefulness and proposing new approximation algorithms based on the semidefinite programming technique.To achieve, we first made an investigation on similar techniques developped before in most representative network problems, the maximum-weight cut problem, the minimum cost clustering problem, and the maximum satisfiability problem. Through this investigation, I could find that a combined technique of the semidefinte programming with the convex programing is quite useful and obtain new approximation algorithms based on this method. To evaluate the new algorithms not only from the theoretical point of view but also from the practical point of view, I implemented the algorithms with the helps of students as well as the algorithms previously proposed by other researchers and made computational experiments.The results in this research were published in the world leading journals, symposia and Information Processing Society of Japan. In view of this, the purpose of this research can be said to be satisfatorily achieved.
本文的研究目的是,综述近年来基于半定规划技术的高性能近似算法的研究成果,研究其实用性,并提出新的基于半定规划技术的近似算法,为此,我们首先研究了在最大权割问题、最小代价聚类问题、最小权割问题、最小权割问题、最大权割问题、最小权割问题、最小权割最大可满足性问题通过这些研究,我发现半定规划与凸规划相结合的方法是很有用的,并在此基础上得到了新的逼近算法。为了从理论和实践的角度对新算法进行评价,我在学生的帮助下实现了这些算法,并对其他研究人员提出的算法进行了计算实验,研究结果发表在世界领先的期刊、研讨会和日本信息处理学会上。鉴于此,本研究的目的可以说是令人满意地实现。

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Asano: "An O (nlog logn) time algorithm for constructing a graph of maximum connectivity with prescribed degrees." Journal of Computer and System Sciences. Vol.51. 503-511 (1995)
T.Asano:“一种 O (nlog logn) 时间算法,用于构建具有规定程度的最大连通性图。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takao Asano: "A Theoretical Framework of Hybrid Approaches to MAX SAT" Proc.8th Symposium on Algorithms and Computation. 8. 153-162 (1997)
Takao Asano:“MAX SAT 混合方法的理论框架”Proc.8th 算法与计算研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takao Asano: "A Refinement of Yannakakis's Algorithm for MAX SAT" 情報処理学会(アルゴリズム研究会報告). 96-AL-54-11. 81-88 (1996)
Takao Asano:“Yannakakis 的 MAX SAT 算法的改进”日本信息处理协会(算法研究小组报告)96-AL-54-11 (1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Asano, T.Ono and T.Hirata: "Approximation algorithms for the maximum satisfiability problem." Nordic Journal of Computing. Vol.3. 388-404 (1996)
T.Asano、T.Ono 和 T.Hirata:“最大可满足性问题的近似算法。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ASANO Takao其他文献

ASANO Takao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ASANO Takao', 18)}}的其他基金

Recursive Utility and Knightian Uncertainty: Theory and Applications
递归效用和奈特不确定性:理论与应用
  • 批准号:
    23730299
  • 财政年份:
    2011
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Approximation algorithms for routing and scheduling problems on networks
网络路由和调度问题的近似算法
  • 批准号:
    23500023
  • 财政年份:
    2011
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High-performance approximation algorithms for information-flow control problems on networks
网络信息流控制问题的高性能近似算法
  • 批准号:
    20500020
  • 财政年份:
    2008
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Real Option, Knightian Uncertainty and Applications
实物期权、奈特不确定性及其应用
  • 批准号:
    20539005
  • 财政年份:
    2008
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Possible role of astrocytes in the disease progression of experimental cerebral ischemia
星形胶质细胞在实验性脑缺血疾病进展中的可能作用
  • 批准号:
    14571330
  • 财政年份:
    2002
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Systematic Approach to Network Approximation Algorithms with Performance Guarantees
具有性能保证的网络逼近算法的系统方法
  • 批准号:
    14580389
  • 财政年份:
    2002
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approximation Algorithms Based on Network Flow and Semidefinite Programming
基于网络流和半定规划的逼近算法
  • 批准号:
    10205222
  • 财政年份:
    1998
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Designing Efficient Discrete Algorithms with High Quality and High Performance
设计高质量、高性能的高效离散算法
  • 批准号:
    10680364
  • 财政年份:
    1998
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neuroprotective effects of the hypothermia on permanent and transient cerebral ischemia
低温对永久性和短暂性脑缺血的神经保护作用
  • 批准号:
    09671444
  • 财政年份:
    1997
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on differences in mechanical property between normal and spastic arterial wall.
正常与痉挛动脉壁力学性能差异的研究。
  • 批准号:
    06671417
  • 财政年份:
    1994
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Approximation Algorithms for Restricted Invertibility and Experimental Design
受限可逆性的近似算法和实验设计
  • 批准号:
    576020-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms and numerical experiments for covering vertices by long paths
长路径覆盖顶点的近似算法和数值实验
  • 批准号:
    573063-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    University Undergraduate Student Research Awards
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPIN-2020-04043
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms and Hardness of Approximation for Optimization Problems
优化问题的逼近算法和逼近难度
  • 批准号:
    RGPIN-2018-04677
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPAS-2020-00075
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
  • 批准号:
    RGPIN-2019-04197
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
  • 批准号:
    RGPIN-2019-04197
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了