Study of Representation theory and Combinatorics and their related topics
表示论和组合学及其相关主题的研究
基本信息
- 批准号:09640059
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Koike showed that the Young-diagrammatic method is still effective for representation theory of the Spinor groups and the orthogonal groups of even ranks in describing the decomposition of the tensor products of two irreducible representations and the branching rules of the irreducible representations.This means that Young-diagrammatic method works well for all the classical groups : He published surveys of his study on representation theory of the classical groups in the Journal "Suugaku" (Publisher : Mathematical Society of Japan) and its English translation (Publisher : American Mathematical Society).Taniguchi showed that the higher terms of the commutative differential operator algebras whose elements are invariant under the action of the Weyl groups are uniquely determined by its second-degree part if the potentialfunction of the second-degree part is periodical. And also if the potential function of the second-degree part is rational, he gives a universal construction of the commutative differential algebras by using the Dunki operators.Yano published two books on the dynamical systems, which put emphasis on the geometric viewpoints. To help the readers understand easily, he focused on one and two dimensional phase spaces and explained the scheme of the important subjects such as Morse-Smale system and Anosov system etc. explicitly.Inoue gives two new methods of constructions of algebraic surfaces of general type whose geometric genus are. zero. Ihara improves his software "package for the multiple precision calculation of integers" and is working on developing a new software for number theory of the elliptic curves by using the above.
小池表明,杨图解法仍然是有效的表示理论的旋量群和正交群的偶数秩在描述分解的张量积的两个不可约表示和分支规则的不可约表示。这意味着杨图解法适用于所有的经典群体:他发表的调查,他的研究代表性理论的经典群体在杂志“Suugaku”(出版社:日本数学会)及其英文译本(发布者:Taniguchi证明了在Weyl群作用下元素不变的交换微分算子代数的高阶项唯一地由它的第二阶确定,如果二次部分的势函数是周期性的,则二次部分是周期性的。如果二次部分的势函数是有理的,他利用Dunki算子给出了交换微分代数的一个普遍构造。矢野发表了两本关于动力系统的书,其中强调了几何观点。为了帮助读者容易理解,他专注于一,二维相空间,并解释了该计划的重要课题,如Morse-Smale系统和Anosov系统等明确井上给出了两个新的方法建设代数曲面的一般类型,其几何属。零.井原改进了他的软件“整数的多精度计算软件包”,并正在利用上述软件开发一种新的椭圆曲线数论软件。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kouichi Yano: Dynamical Systems 2. Iwanami Shoten, 191 (1998)
矢野浩一:动力系统 2. 岩波书店,191 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiko Koike: "On Reprentation of the Classical Groups" Amer. Math. Soc. Transl(2). 183. 79-100 (1998)
小池和彦:“论古典群体的再现”阿米尔。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kenji, Taniguchi: "On Uniqueness of Commutative Rings of Weyl Group Invariant Differential Operators" Pbul.of RIMS.Kyoto University. Vol33. 257-276 (1997)
Kenji, Taniguchi:“论 Weyl 群不变微分算子的交换环的唯一性”Pbul.of RIMS.京都大学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiko Koike: "Principal Specializations of the Classical Groups and q-Analogs of Dimension form" Advances in Mathematics. 125. 236-274 (1997)
Kazuhiko Koike:“经典群和维度形式的 q 类似物的主要专业化”数学进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kenji Taniguchi: "Different Operators which commute with r^<-2>-type Hamiltonian" Proceedings of Workshop on Calogero-Moser-Sutheslaud Models. (1999)
Kenji Taniguchi:“与 r^<-2> 型哈密顿量交换的不同算子”Calogero-Moser-Sutheslaud 模型研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOIKE Kazuhiko其他文献
KOIKE Kazuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOIKE Kazuhiko', 18)}}的其他基金
Evaluation of environmental factors and the risks controlling ocean productivities at the coast of Myanmar
缅甸沿海环境因素及控制海洋生产力风险评估
- 批准号:
26304031 - 财政年份:2014
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Expelled zooxanthellae from corals; possible source as symbionts to other corals
从珊瑚中排出虫黄藻;
- 批准号:
24570028 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of hepatitis C virus suicide therapy employing the viral protease
利用病毒蛋白酶开发丙型肝炎病毒自杀疗法
- 批准号:
23659393 - 财政年份:2011
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Zooxanthellal cycle in coral reefs
珊瑚礁中的虫黄藻循环
- 批准号:
21310011 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Metabolic abnormalities in hepatitis C and its impact on the progression of liver disease
丙型肝炎的代谢异常及其对肝病进展的影响
- 批准号:
20390204 - 财政年份:2008
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hepatitis C as a Metabolic Disease : Pathogenesis for liver cancer and lifestyle-related diseases
丙型肝炎作为一种代谢性疾病:肝癌和生活方式相关疾病的发病机制
- 批准号:
18390214 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on representation theory of the classical groups and their related combinatorics
经典群表示论及其相关组合学研究
- 批准号:
18540046 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional abnormality in the mitochondria and pathogenesis of chronic hepatitis C: relation to hepatocellular carcinoma
线粒体功能异常和慢性丙型肝炎的发病机制:与肝细胞癌的关系
- 批准号:
15390226 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation Theory, Combinatorics and Related Topics
表示论、组合学及相关主题
- 批准号:
14540041 - 财政年份:2002
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the mechanism of hepatocarcinogenesis in hepatitis C viral infection
丙型肝炎病毒感染致肝癌机制研究
- 批准号:
13214018 - 财政年份:2001
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
相似海外基金
Rational singularities, Young diagram, Painleve equation
有理奇点、Young 图、Painleve 方程
- 批准号:
11440006 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)