Research on Complex Analytic Properties of Complex Homogeneous Spaces
复齐次空间的复解析性质研究
基本信息
- 批准号:09640174
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the main objectives of this research project is to find necessary and sufficient conditions for homogeneous spaces of Lie groups to have a (bi-)invariant CR structure. Then next we have the task to classify them complex analytically. During the term of the project we obtained some of the basic properties of the category of CR vector spaces. We could apply them to investigate the conditions mentioned above and then to pursue the classification. These tasks are, however, not yet accomplished at the present moment, but are left for the future study We now list up some of the remarkable results of each investigator.(1) Takeuchi's result : He gave a new notion of CR tensor product of CR vector spaces, which generalizes that of the tensor product in the category of modules.(2) Hatada studied relations, on structure, among spaces of modular forms in positive characteristics and theirsubspaces. He studied also methods for explicit computations of the traces of Hecke operators with respect to spaces of complex modular forms and their invariant subspaces, and applications of them.(3) Fujimoto's result : (i) A rational elliptic surface with many torsion sections is, by a birational transformation, transformed to a rational elliptic surface with a multiple fiber. (ii) A non-singular projective threefold with a non-negative Kodaira dimension admitting an (nonisomorphic) onto self-holomorphism, has a non-singular minimal model and if the Kodaira dimension=2, or 0, it has a finite etale covering isomorphic to an Abelian threefold, or a direct product of a smooth surface and an elliptic curve.
这个研究项目的主要目标之一是找到李群的齐性空间具有(双)不变CR结构的充分必要条件。接下来,我们的任务是对它们进行复杂的分析分类。在项目期间,我们得到了CR向量空间范畴的一些基本性质。我们可以应用它们来研究上述情况,然后进行分类。然而,这些任务目前还没有完成,而是留给未来的研究,我们现在列出每个研究者的一些显着成果。(1)Takeuchi的结果:他给出了CR向量空间的CR张量积的新概念,推广了模范畴中张量积的概念。(2)Hatada研究了正特征模形式空间及其子空间之间的结构关系。他还研究了方法明确计算的痕迹Hecke运营商相对于空间的复杂的模块化形式及其不变的子空间,并应用它们。(3)Fujimoto的结果:(i)通过双有理变换,将一个具有多个挠截面的有理椭圆曲面变换为一个具有重纤维的有理椭圆曲面。(ii)具有非负科代拉维数的非奇异射影三重映射允许一个(非同构的)到自全纯上,具有非奇异极小模型,并且如果科代拉维数=2或0,则它具有同构于阿贝尔三重映射的有限代数覆盖,或光滑曲面与椭圆曲线的直积。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shigeru Takeuchi: "Generalized Serre problem and the peudoconvexity of reductive complex Lie group actions on complex manifolds" Proc.5th Intn'l Conf.Finite or Infinite Dimensional Complex Analysis. (1998)
Shigeru Takeuchi:“广义塞尔问题和复流形上还原复李群作用的伪凸性”Proc.5th Intnl Conf.Finite 或 Infinite Dimensional Complex Analysis。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigeru Takeuchi: "Canonical DR stuctures on the space of DR morphisms" Sci.Rep.Fac.Ed.Gifu Univ.23-1. (1998)
Shigeru Takeuchi:“关于 DR 态射空间的规范 DR 结构”Sci.Rep.Fac.Ed.Gifu Univ.23-1。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshio Fujimoto: "On Explicit Constructions of Rational Elliptic Surfaces with Multiple Fibers" J.Math.Kyoto Univ.(1998)
Yoshio Fujimoto:“论具有多纤维的有理椭圆曲面的显式构造”J.Math.Kyoto Univ.(1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuyuki Hatada: "A NOTE ON MODULAR FORMS (MOD P)" Sci.Rep.Fac.Ed.Gifu Univ.22-2. 7-12 (1998)
Kazuyuki Hatada:“关于模块化形式的注释 (MOD P)”Sci.Rep.Fac.Ed.Gifu Univ.22-2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kiyoshi Shiga: "CR tensor product" Sci.Rep.Fac.Ed.Gifu Univ.21-2. (1997)
志贺清:“CR 张量积”Sci.Rep.Fac.Ed.Gifu Univ.21-2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKEUCHI Shigeru其他文献
TAKEUCHI Shigeru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKEUCHI Shigeru', 18)}}的其他基金
RESEARCH ON COMPLEX ANALYSIS BY GROUP THEORETIC AND GEOMETRIC METHOD
群论与几何方法的复分析研究
- 批准号:
12640167 - 财政年份:2000
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)