The Equations for the Motion of Viscous Incompressible Fluids
粘性不可压缩流体的运动方程
基本信息
- 批准号:09640202
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Head investigator Kato has studied the equations for the motion of viscous incompressible fluids.1. For the periodicity problem, she proved the existence of periodic solu- tions for the Navier-Stokes equations under critical smallness assumption on the data (Ref. Kato [13).2. For the initial boundary value problem, she has found modified Navier- Stokes equations, and has proved the existence of global (in time ) strong solutions which satisfy the Navier-Stokes equations in time intervals when the velocity gradient is below a given constant, and satisfy the equations 'called non-Newtonian' in time intervals when the velocity gradient is above the constant (Ref. Kato [2], [3]). Furthermore, she has shown that the solu- tions of the modified Navier-Stokes quations converge to the solutions of the stationary equations as t * *(Ref. Kato [4]).Investigator Nakao has studied mainly on decay and global existence prob- lems for nonlinear wave equations. Concerning the latter he has derived re- sults which depend on precise decay estimates for energy. He has also derived an interesting result on the decay of local energy for the exterior problem. (Ref. Nakao [1]-[6]).Investigator Hyakutake gives confidence regions of the multinormal mean by two-stage procedures and its asymptotic properties (Ref. Hyakutake [1], [2]).
首席研究员加藤研究了粘性不可压缩流体的运动方程。对于周期性问题,她证明了Navier-Stokes方程在临界小假设下周期解的存在性(参考文献Kato [13]).对于初边值问题,她发现了修正的Navier-Stokes方程,并证明了当速度梯度低于给定常数时,在时间区间内满足Navier-Stokes方程的整体(在时间上)强解的存在性,当速度梯度高于该常数时,在时间区间内满足“称为非牛顿”的方程(参考文献Kato [2],[3])。此外,她还证明了修正的Navier-Stokes方程的解收敛于定常方程的解为t * *(参考文献Kato [4])。Nakao研究员主要研究非线性波动方程的衰减和整体存在问题。关于后者,他得出的结果依赖于能量的精确衰变估计。他还得出了一个有趣的结果衰减当地能源的外部问题。(Ref. Nakao [1]-[6])。研究者Hyakutake通过两阶段程序给出了多正态均值的置信域及其渐近性质(参考Hyakutake [1],[2])。
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hisako Kato: "Existence of periodic solutions of the Navier-Stokes equations" J. Math. Anal. Appl.208-1. 141-157 (1997)
加藤久子:“纳维-斯托克斯方程周期解的存在性”J. Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroyuki Nakao: "Approximated confidence regions in multivariate linear calibration" Commn. Statist. -Simula.26. 829-839 (1997)
Hiroyuki Nakao:“多元线性校准中的近似置信区域”Commn。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mitsuhiro Nakao: "Local energy decay for the wave eguation in an exterior domain with a licaliged dissipation" J. Dufferential Eguations. 148. 388-406 (1998)
Mitsuhiro Nakao:“具有合法耗散的外部域中波方程的局部能量衰减”J. Dufferential Eguations。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mitsuhiro Nakao: "Global solutions to the initial-boundary value problem for the quasilinear visco-elastic wave equation with a perturbation" Funkcialaj Ekvacioj. 40-2. 293-312 (1977)
Mitsuhiro Nakao:“带有扰动的拟线性粘弹性波动方程初始边值问题的全局解”Funkcialaj Ekvacioj。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hisako Kato: "Initial boundary value problem for the viscous incompressible flows." Proceedings of the First Congress ISAAC'97, University of Delaware, U.S.A. Kluwer Publisher. (to appear).
Hisako Kato:“粘性不可压缩流的初始边值问题。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATO Hisako其他文献
KATO Hisako的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATO Hisako', 18)}}的其他基金
The global existence of solutions for the motion of viscous incompressible fluids
粘性不可压缩流体运动解的整体存在性
- 批准号:
13640179 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




