The construction of the field theory on the noncommutative spaces and its application

非交换空间场论的构建及其应用

基本信息

  • 批准号:
    09640331
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 2000
  • 项目状态:
    已结题

项目摘要

The aim of this research is to construct the field theory over the non-commutative space and to analyze its physical properties. In the last 4 years research supported by the present Grant-in-Aid we have been especially investigating the field theory on the non-commutative sphere as a concrete example of a non-commutative curved space. The non-commutative sphere is defined by quantizing the algebra over the 2-sphere. As a first step in this direction we have constructed the non-commutative differential algebra according to the approach given by Connes (paper 1), and as its application we formulated the scalar field on the non-commutative sphere (paper 2). Our main interest is to define the gauge theory on the non-commutative sphere. However, for this end we had to analyze further detailed structure of the differential calculus. In paper 3 we succeeded to formulated the U (1) gauge theory, and we have analyzed its commutative limit. Especially in gauge theory we obtained a new term and the structure of this new term, which does not have a correspondence in the commutative case, gives us a tool to classify the gauge theory on the non-commutative sphere.Recently, it is found that the D-brane which wraps around the torus possesses a non-commutative structure in the background of an antisymmetric tensor field. It is an interesting problem to investigate the ralation between string theory and non-commutative geometry. From this point of view we investigated the D-brane in the group manifold and constructed the boundary state in the SU (2) manifold (paper 5). The effective theory of this D-brane in SU (2) is given by the gauge thoery on the non-commutative sphere described above and we are presently researching those relations.
本研究的目的是建立非对易空间上的场论并分析其物理性质。在过去的4年里,在本补助金的支持下,我们一直在特别调查非交换领域的场论作为一个具体的例子,非交换弯曲空间。通过量子化2-球面上的代数定义了非交换球面。作为第一步,在这个方向上,我们已经建立了非交换微分代数根据的方法由Connes(文件1),并作为其应用,我们制定了标量场的非交换球(文件2)。我们的主要兴趣是在非对易球上定义规范理论。然而,为了这个目的,我们不得不进一步分析微分的详细结构。文3成功地建立了U(1)规范理论,并分析了它的交换极限。特别是在规范场论中,我们得到了一个新的项,这个新的项的结构在对易情形下是不对应的,它为我们在非对易球面上对规范场论进行分类提供了一个工具。最近,人们发现在反对称张量场的背景下,包在环面上的D-膜具有非对易结构。弦理论与非对易几何的关系是一个有趣的问题。从这个角度出发,我们研究了群流形中的D-膜,并构造了SU(2)流形中的边界态(论文5)。SU(2)中这个D膜的有效理论是由上述非对易球体上的规范理论给出的,我们目前正在研究这些关系。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Maeda: "Noncommutative Differential Geometry and its Application to Physics"Kluwer Academic Press. 306 (2001)
Y.Maeda:“非交换微分几何及其在物理学中的应用”Kluwer 学术出版社。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Satoshi Watamura: "Noncommutative Geometry and Field Theory"Butsuri. 55 (in Japanese). 756-762 (2000)
渡村聪:《非交换几何与场论》Butsuri。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
U.Carow-Watamura: "Noncommutative Geometry and Gauge Theory on Fnzzy Sphere"Communications in Mathematical Physics. 212・2. 395-413 (2000)
U.Carow-Watamura:“Fnzzy 球体上的非交换几何和规范理论”数学物理学通讯 212・2 395-413(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
U.Carow-Watamura: "Dirac and Chirality operator on Noncommutative Sphere" Communications in Mathematical Physics. 183・2. 365-382 (1997)
U.Carow-Watamura:“非交换球面的狄拉克和手性算子”数学物理学通讯 183・2(1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroshi Ishikawa and Satoshi Watamura: "Free field realization of D-brane in group manifold"Journal of High Energy Physics. 08. 044 (2000)
Hiroshi Ishikawa 和 Satoshi Watamura:“群流形中 D 膜的自由场实现”高能物理杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WATAMURA Satoshi其他文献

WATAMURA Satoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WATAMURA Satoshi', 18)}}的其他基金

Symmetry in Noncommutative Geometry and its String Theory Origin
非交换几何中的对称性及其弦理论起源
  • 批准号:
    19540257
  • 财政年份:
    2007
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the Field Theory in the Noncommutative Space obtained through the Deformation Quantization and its Application
变形量子化非交换空间场论研究及其应用
  • 批准号:
    13640256
  • 财政年份:
    2001
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Theory of circuit quantum gravity using superconducting quantum circuits and its application to quantum space-time communication
基于超导量子电路的电路量子引力理论及其在量子时空通信中的应用
  • 批准号:
    21J22333
  • 财政年份:
    2021
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Structures of quantum space-time
量子时空结构
  • 批准号:
    2104999
  • 财政年份:
    2018
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Studentship
Novel quantum space-time on curved Dirac materials and relativistic quantum many-body characteristics
弯曲狄拉克材料的新型量子时空和相对论量子多体特性
  • 批准号:
    16K05334
  • 财政年份:
    2016
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Building quantum space-time: spin foams and the renormalization group
构建量子时空:自旋泡沫和重正化群
  • 批准号:
    422809950
  • 财政年份:
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Independent Junior Research Groups
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了