Research of image measurement of shape information for identification of growth status of young plants

形状信息图像测量识别幼苗生长状态的研究

基本信息

  • 批准号:
    08660315
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1997
  • 项目状态:
    已结题

项目摘要

Features of figure of plant have been expected as useful indices of status of growth. For example, leaf tip angle is known as a significant index of inner water potential status. However, it is very difficult to measure leaf tip angle of all foliages manually. Efficient method of measuring leaf tip angle is necessary. In this paper, a new method of image measurement of leaf tip angle for small foliage or seedling was proposed and its availability was studied. Wedge-shaped feature, which is one of textural features, contains information about tip angle of line in image. Using this characteristic, the method of measuring both average and three dimensional distribution of leaf tip angle was developed. First, fundamental availability of this method was confirmed with simulated images which contain a lot of small three dimensional disks randomly distributed in a cubic area. As a result, wedge-shaped features can indicate average of tip angle properly. Further, an outline of three dimensiona … More l distribution of tip angle was reconstructed properly from two dimensional distributions of tip angle derived from images taken from several directions. Second, practical availability of this method was studied with images of real plants. Consequently, this method can detect differences between controlled figures and treated ones properly.Three dimensional distribution of leaf tip angle and three dimensional outline of shape of tomato plants were measured by the method of image measurement based on textural features, and its availability was verified. An algorithm for simplifying the complicated information for efficient transaction was proposed. From discussions on the results, the following conclusions were derived. (1) three dimensional distribution of leaf tip angle and three dimensional outline of shape of tomato plants can be measured separately fairly well especially in upper and younger regions. (2) because crowded leaves in lower and older regions have different tendencies in leaf tip angle between inner layer and outer one, three dimensional measurement is very effective for measuring the proper condition of leaf tip angle. Principal component analysis was applied to obtain understandable indices. The analysis is helpful in understanding the meaning of the shape information. Less
植物的外形特征有望成为反映植物生长状况的有用指标。例如,叶尖角度被认为是内部水势状态的重要指标。然而,人工测量所有叶片的叶尖角是非常困难的。有效的叶尖角度测量方法是必要的。本文提出了一种新的叶片叶尖角图像测量方法,并对该方法的有效性进行了研究。楔形特征是纹理特征的一种,它包含了图像中直线的顶角信息。利用这一特性,提出了一种同时测量叶尖角度平均值和三维分布的方法。首先,用包含大量随机分布在立方体区域中的三维小圆盘的模拟图像证实了该方法的基本有效性。因此,楔形特征可以适当地指示尖端角度的平均值。此外,三维轮廓a ...更多信息 根据从多个方向拍摄的图像导出的尖端角的二维分布适当地重建尖端角的L分布。其次,用真实的植物图像研究了该方法的实用性。采用基于纹理特征的图像测量方法测量了番茄植株叶尖角度的三维分布和形状的三维轮廓,验证了该方法的有效性。提出了一种简化复杂信息以实现高效交易的算法。通过对结果的讨论,得出以下结论。(1)可以相当好地分别测量番茄植株的叶尖角的三维分布和形状的三维轮廓,特别是在上部和较年轻的区域。(2)由于低层和老层密集叶的叶尖角度在内层和外层的变化趋势不同,因此三维测量对于确定叶尖角度的适宜状态是非常有效的。采用主成分分析法获得可理解的指标。该分析有助于理解形状信息的含义。少

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHONO Hiroshi其他文献

SHONO Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHONO Hiroshi', 18)}}的其他基金

Development of a novel measuring method for judgement of agricultural soundness of field recovered from contamination
开发一种新的测量方法来判断污染后恢复的田地的农业健全性
  • 批准号:
    24580379
  • 财政年份:
    2012
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of Mechanism of the Temporal Rise in UVA Reflectance of Gentian Cut Flowers and Feasibility of Application to Judging Freshness
龙胆切花UVA反射率随时间上升的机制研究及应用于新鲜度判断的可行性
  • 批准号:
    20580282
  • 财政年份:
    2008
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of a Non-destructive Measurement Method for Judging the Growth Stage of Gentian for Flower Harvest and Quality Control
判断龙胆生长阶段的无损测量方法研究及花卉采收与质量控制
  • 批准号:
    18580258
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of a real-time evaluation method using an AI-based image processing system in liver tumor ablaition
基于人工智能的图像处理系统开发肝脏肿瘤消融实时评估方法
  • 批准号:
    23K11923
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of big data analysis platform for fish behavior in the sea by image processing, change detection, and machine learning techniques
利用图像处理、变化检测、机器学习技术构建海洋鱼类行为大数据分析平台
  • 批准号:
    23K14005
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing next-generation, AI-enabled, medical image processing for multiple sclerosis clinical trials and routine care.
开发用于多发性硬化症临床试验和日常护理的下一代人工智能医学图像处理。
  • 批准号:
    2877679
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Studentship
CRII: SHF: RUI: Custom Hardware Accelerators for Privacy-Preserving Image Processing
CRII:SHF:RUI:用于保护隐私的图像处理的定制硬件加速器
  • 批准号:
    2347253
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Creating a Technological Infrastructure for the Digital Restoration of Cultural Properties Using Statistical Image Processing and Deep Learning
利用统计图像处理和深度学习为文化财产数字化修复创建技术基础设施
  • 批准号:
    22H00748
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
I-Corps: Image processing platform to identify photosynthetic pigment density to measure nitrogen content and manage fertilizer (Smart Sustainable Fertilizer Manager)
I-Corps:图像处理平台,用于识别光合色素密度,测量氮含量并管理肥料(智能可持续肥料管理器)
  • 批准号:
    2227256
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
  • 批准号:
    RGPIN-2018-03966
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Development of an Image Processing Algorithm to Customize Cochlear Implant Procedures
开发用于定制人工耳蜗植入程序的图像处理算法
  • 批准号:
    548003-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Image Processing Techniques for the Segmentation, Fusion, and Registration of Ultrasound Images from Intracavitary Gynecologic Brachytherapy Procedures
用于腔内妇科近距离放射治疗过程中超声图像的分割、融合和配准的图像处理技术
  • 批准号:
    557687-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Postdoctoral Fellowships
Development and utilization of digital / analog teaching materials using 3D image processing and 3D printers for biological education
利用3D图像处理和3D打印机进行生物教育的数字/模拟教材的开发和利用
  • 批准号:
    22K02988
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了