Development of algorithms for solving graph/network problems

开发解决图/网络问题的算法

基本信息

项目摘要

In this research, we have developed efficient graph algorithms and clarified graph structures in the graph/network problems.We have obtained the following results for the problems related to connectivity. We have improved the time complexity for representing all minimum cuts in a cactus. To achieve this, we used a maximum adjacency ordering, a graph search procedure by which all minimum cuts can be found without using the maximum-flow algorithm. A subset of edges is called a k-cut if removal of it results in k components. We have reduced the time bound for computing a minimum k-cut for k=3,4,5,6 by a new approach that enumerates 2-cut in the nondecreasing order of weights. We have proved that necessary information to solve the k-edge-connectivity augmentation problem can be extracted from an appropriate set of cuts with size less than k in a given graph. By using such a set of cuts, we can control structure of solutions to the edge-connectivity augmentation problem.We have also obtained the following results in designing approximation algorithms. For the vertex-connectivity problem with a target value k, an approximation algorithm was proposed only for the case where a given graph is (k-1)-vertex-connected. We extend the algorithm so that it works for an arbitrary input graph. Our algorithm delivers an solution with absolute error 2(α-k)k, where α =the vertex-connectivity of an input graph. We have studied the problem of increasing the edge- and vertex-connectivities at the same time, and gave an approximation algorithm with absolute error that depends only on the target values. We have also designed a (7/2)-approximation algorithm for the weighted 3-vertex-connectivity augmentation problem, a 2-approximation algorithm for the weighted minimum edge dominating set problem and a dH(r)-approximation algorithm for the network design problem in hypergraph with degree d, where r is the maximum demand and H() is the harmonic function.
在这项研究中,我们开发了高效的图算法,并阐明了图/网络问题中的图结构。我们改进了表示仙人掌中所有最小切割的时间复杂度。为了实现这一点,我们使用了最大邻接排序,这是一种图搜索过程,通过它可以找到所有的最小割线,而不需要使用最大流算法。如果去除边子集得到k个分量,则称其为k-割。我们通过一种新的方法减少了计算k=3,4,5,6的最小k-割的时间界限,该方法以非降序的方式计数2-割。我们已经证明了解决k-边连通性增强问题所需的信息可以从给定图中长度小于k的适当割集中提取。利用这样的割集,我们可以控制边连通性增强问题的解的结构。在设计近似算法方面,我们还得到了以下结果。对于目标值为k的顶点连通性问题,仅当给定的图是(k-1)点连通的情况下,才提出了一种近似算法。我们对算法进行了扩展,使其适用于任意输入图。我们的算法提供了一个绝对误差为2(α-k)k的解,其中α=输入图的顶点连通性。研究了同时增加边连通度和顶点连通度的问题,给出了一种只依赖目标值的绝对误差近似算法。我们还设计了加权3点连通性增强问题的(7/2)近似算法、加权最小边支配集问题的2近似算法和d度超图中网络设计问题的dH(R)近似算法,其中r是最大需求,H()是调和函数。

项目成果

期刊论文数量(174)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Karuno: "A 1.5-approximation for single-vehicle scheduling problem on a line with release and handling times"Japan-U.S.A.Symposium on Flexible Automation. 1363-1366 (1998)
Y.Karuno:“A 1.5-approximation for single-vehicle Scheduling Problem on a line with release and Handling times”日本-美国灵活自动化研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Nagamochi: "A note on minimizing submodular functions"Information Processing Letters. vol.67. 239-244 (1988)
H.Nagamochi:“关于最小化子模函数的说明”信息处理快报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Nagamochi: "An approximation of the minimum vertex cover in a graph"J.of Japan Society for Industrial and Applied Mathematics. vol.16,no.3. 369-375 (1999)
H.Nagamochi:“图中最小顶点覆盖的近似”,日本工业与应用数学学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
P.Eades: "Drawing clustered graphs on an orthogonal grid"Journal of Graph Algorithms and Application. vol.3,no.4. 3-29 (1999)
P.Eades:“在正交网格上绘制聚类图”图算法与应用杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
L.Zhao: "Approximating the minimum k-way cut in a graph via minimum 3-way cuts"J.Combinatorial Optimization. vol.5. 397-410 (2001)
L.Zhao:“通过最小 3 路切割近似图中的最小 k 路切割”J.组合优化。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGAMOCHI Hiroshi其他文献

機械学習QSARの整数計画法に基づく逆解析法
基于整数规划的机器学习QSAR逆分析方法
  • DOI:
    10.2477/jccj.2021-0030
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NAGAMOCHI Hiroshi;ZHU Jianshen;AZAM Naveed Ahmed;HARAGUCHI Kazuya;ZHAO Liang;AKUTSU Tatsuya
  • 通讯作者:
    AKUTSU Tatsuya

NAGAMOCHI Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGAMOCHI Hiroshi', 18)}}的其他基金

Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
  • 批准号:
    20K11691
  • 财政年份:
    2020
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Algorithms for Discrete Optimization Based on Graph-Theoretical Methods
基于图论方法的离散优化算法设计
  • 批准号:
    17K00014
  • 财政年份:
    2017
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm design techniques based on transformation into network structure
基于网络结构转化的算法设计技术
  • 批准号:
    23500015
  • 财政年份:
    2011
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of Plat-form Models for the Problemof Packing Geometrical Objects
几何对象填充问题的平台模型构建
  • 批准号:
    20500012
  • 财政年份:
    2008
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of properties on the connectivity of graphs and networks and its applications to design of algorithms
图和网络的连通性分析及其在算法设计中的应用
  • 批准号:
    17500008
  • 财政年份:
    2005
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Approximation Algorithms for the Problems with Grapth Structure
图结构问题的逼近算法设计
  • 批准号:
    16092212
  • 财政年份:
    2004
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Construction of Approximation Algorithms Based on Graph Theory and Its Application to Network Problems
基于图论的逼近算法构建及其在网络问题中的应用
  • 批准号:
    14580372
  • 财政年份:
    2002
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了