Development of algorithms for solving graph/network problems

开发解决图/网络问题的算法

基本信息

项目摘要

In this research, we have developed efficient graph algorithms and clarified graph structures in the graph/network problems.We have obtained the following results for the problems related to connectivity. We have improved the time complexity for representing all minimum cuts in a cactus. To achieve this, we used a maximum adjacency ordering, a graph search procedure by which all minimum cuts can be found without using the maximum-flow algorithm. A subset of edges is called a k-cut if removal of it results in k components. We have reduced the time bound for computing a minimum k-cut for k=3,4,5,6 by a new approach that enumerates 2-cut in the nondecreasing order of weights. We have proved that necessary information to solve the k-edge-connectivity augmentation problem can be extracted from an appropriate set of cuts with size less than k in a given graph. By using such a set of cuts, we can control structure of solutions to the edge-connectivity augmentation problem.We have also obtained the following results in designing approximation algorithms. For the vertex-connectivity problem with a target value k, an approximation algorithm was proposed only for the case where a given graph is (k-1)-vertex-connected. We extend the algorithm so that it works for an arbitrary input graph. Our algorithm delivers an solution with absolute error 2(α-k)k, where α =the vertex-connectivity of an input graph. We have studied the problem of increasing the edge- and vertex-connectivities at the same time, and gave an approximation algorithm with absolute error that depends only on the target values. We have also designed a (7/2)-approximation algorithm for the weighted 3-vertex-connectivity augmentation problem, a 2-approximation algorithm for the weighted minimum edge dominating set problem and a dH(r)-approximation algorithm for the network design problem in hypergraph with degree d, where r is the maximum demand and H() is the harmonic function.
在本研究中,我们发展了有效的图演算法,并厘清了图/网路问题中的图结构。我们已经改善了时间复杂度表示所有最小割仙人掌。为了实现这一点,我们使用了最大邻接排序,一个图搜索过程,通过它可以找到所有的最小切割,而不使用最大流算法。一个边的子集被称为k-割,如果删除它的结果是k个组件。本文采用一种新的方法,即按权重的非递减顺序列举2-割,从而减少了计算k= 3,4,5,6的最小k-割的时间界限。我们已经证明,必要的信息,以解决k-边连通性增强问题,可以从一个适当的一组大小小于k在一个给定的图的削减提取。利用这一割集,我们可以控制边连通性扩充问题解的结构,并在设计近似算法时得到了如下结果。针对目标值为k的点连通度问题,提出了一个仅适用于给定图为(k-1)-点连通的近似算法.我们扩展算法,使其适用于任意输入图。我们的算法提供了一个绝对误差为2(α-k)k的解决方案,其中α =输入图的顶点连通度。本文研究了边连通度和顶点连通度同时增加的问题,给出了一个绝对误差只依赖于目标值的近似算法。对于d度超图中的加权3-点连通性扩充问题,我们设计了一个(7/2)-近似算法,一个2-近似算法,一个dH(r)-近似算法,其中r是最大需求,H()是调和函数。

项目成果

期刊论文数量(174)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Nagamochi: "A note on minimizing submodular functions"Information Processing Letters. vol.67. 239-244 (1988)
H.Nagamochi:“关于最小化子模函数的说明”信息处理快报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Karuno: "A 1.5-approximation for single-vehicle scheduling problem on a line with release and handling times"Japan-U.S.A.Symposium on Flexible Automation. 1363-1366 (1998)
Y.Karuno:“A 1.5-approximation for single-vehicle Scheduling Problem on a line with release and Handling times”日本-美国灵活自动化研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Nagamochi: "An approximation of the minimum vertex cover in a graph"J.of Japan Society for Industrial and Applied Mathematics. vol.16,no.3. 369-375 (1999)
H.Nagamochi:“图中最小顶点覆盖的近似”,日本工业与应用数学学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
P.Eades: "Drawing clustered graphs on an orthogonal grid"Journal of Graph Algorithms and Application. vol.3,no.4. 3-29 (1999)
P.Eades:“在正交网格上绘制聚类图”图算法与应用杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
L.Zhao: "Approximating the minimum k-way cut in a graph via minimum 3-way cuts"J.Combinatorial Optimization. vol.5. 397-410 (2001)
L.Zhao:“通过最小 3 路切割近似图中的最小 k 路切割”J.组合优化。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGAMOCHI Hiroshi其他文献

機械学習QSARの整数計画法に基づく逆解析法
基于整数规划的机器学习QSAR逆分析方法
  • DOI:
    10.2477/jccj.2021-0030
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NAGAMOCHI Hiroshi;ZHU Jianshen;AZAM Naveed Ahmed;HARAGUCHI Kazuya;ZHAO Liang;AKUTSU Tatsuya
  • 通讯作者:
    AKUTSU Tatsuya

NAGAMOCHI Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGAMOCHI Hiroshi', 18)}}的其他基金

Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
  • 批准号:
    20K11691
  • 财政年份:
    2020
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Algorithms for Discrete Optimization Based on Graph-Theoretical Methods
基于图论方法的离散优化算法设计
  • 批准号:
    17K00014
  • 财政年份:
    2017
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm design techniques based on transformation into network structure
基于网络结构转化的算法设计技术
  • 批准号:
    23500015
  • 财政年份:
    2011
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of Plat-form Models for the Problemof Packing Geometrical Objects
几何对象填充问题的平台模型构建
  • 批准号:
    20500012
  • 财政年份:
    2008
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of properties on the connectivity of graphs and networks and its applications to design of algorithms
图和网络的连通性分析及其在算法设计中的应用
  • 批准号:
    17500008
  • 财政年份:
    2005
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Approximation Algorithms for the Problems with Grapth Structure
图结构问题的逼近算法设计
  • 批准号:
    16092212
  • 财政年份:
    2004
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Construction of Approximation Algorithms Based on Graph Theory and Its Application to Network Problems
基于图论的逼近算法构建及其在网络问题中的应用
  • 批准号:
    14580372
  • 财政年份:
    2002
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了