Development of new high-energy anode material for large-scale secondary battery using metallic nano-particle

利用金属纳米颗粒开发新型大型二次电池高能负极材料

基本信息

  • 批准号:
    10450320
  • 负责人:
  • 金额:
    $ 7.23万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

The explosive demand for portable electronic devices has brought about an increase in the importance of compact, lightweight and reliable power sources. One of the most probable candidates for such requirements is lithium rechargeable battery. One is a lithiated transition metal oxide as cathode and the other graphite anode. However, it is well known that the quantity of active material per unit weight or volume determines the energy density of the battery. The graphite anode material commonly used in lithium rechargeable batteries suffers from small capacity per unit weight about 350mAh/g and/or per unit volume due to its low density. To overcome these disadvantages, considerable amounts of attempts have been made by several workers to find out alternative anode materials in place of graphite anodes. In this report, crystalline MnVィイD22ィエD2OィイD26ィエD2 and MnMoOィイD24ィエD2 was synthesized by a polymer gellation and solidstate reaction method and investigated for its physical and electrochemical properties as an anode material for lithium secondary battery. The physical properties of characterization was carried out by thermal analysis (TG/DTA), FT-IR, and SEM. Structural analysis by powder XRD, and spectroscopic analysis by XANES shows that the synthesized compound is MnVィイD22ィエD2OィイD26ィエD2 with brannerite structure. The Li insertion of MnVィイD22ィエD2OィイD26ィエD2 anode during the first charge showed a large capacity of about 1400 mAh/g, accompanied by irreversible structural transformation into amorphous material. Despite its structural transformation to amorphous during the first lithiation, subsequent cycles showed a capacity of about 800mAh/g. This report presents the advantage of this material over existing anode material and discusses the mechanism underlying the electrode process.
对便携式电子设备的爆炸性需求增加了紧凑、轻便和可靠的电源的重要性。最可能满足这种要求的候选者之一是锂充电电池。一种是锂化过渡金属氧化物作阴极,另一种是石墨作阳极。然而,众所周知,每单位重量或体积的活性物质的数量决定了电池的能量密度。锂可充电电池中常用的石墨负极材料由于密度低,单位重量和/或单位体积的容量较小,约为350mAh/g。为了克服这些缺点,一些工作人员已经进行了大量的尝试,以寻找替代石墨阳极的阳极材料。本文采用聚合物凝胶法和固相反应法制备了MnV的结晶MnV φ φ D22 φ φ D2O φ φ D26 φ φ D2和MnMoO φ φ D24 φ φ D2,并对其作为锂二次电池负极材料的物理和电化学性能进行了研究。通过热分析(TG/DTA)、红外光谱(FT-IR)和扫描电镜(SEM)对表征物性进行了表征。粉末XRD结构分析和XANES光谱分析表明,合成的化合物为锰镍矿结构的MnV γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ。在第一次充电过程中,MnV小伙伴D22小伙伴D2O小伙伴D26小伙伴D2负极的锂插入量显示出约1400 mAh/g的大容量,并伴有不可逆的非晶态结构转变。尽管在第一次锂化过程中其结构转变为非晶态,但随后的循环显示其容量约为800mAh/g。本报告介绍了这种材料相对于现有阳极材料的优势,并讨论了电极工艺的机制。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mori NAGAYAMA: "A New Anode Material SnSO_4 for Lithium Secondary Battery" Solid State Ionics. 106. 33-38 (1998)
Mori NAGAYAMA:“一种用于锂二次电池的新型负极材料SnSO_4”固态离子学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Reiko YAMAGUCHI: "Heat of Formation for LiM_yMn_<2-y>O_4 (M=Co, Cr, Li, Mg, Ni) Spinel Solid Solution"J. Therm. Anal. Cal.. 57. 797-806 (1999)
Reiko YAMAGUCHI:“LiM_yMn_<2-y>O_4(M=Co、Cr、Li、Mg、Ni)尖晶石固溶体的形成热”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mamoru HOSOYA: "Single Phase Region of Cation Substituted Spinel LiM_yMn_<2-y>O_<4-δ>(M=Cr,Co and Ni) and Cathode Property for Lithium Secondary Battery" Solid State Ionics. 111. 153-159 (1998)
Mamoru Hosoya:“阳离子取代尖晶石LiM_yMn_<2-y>O_<4-δ>(M=Cr、Co和Ni)的单相区域和锂二次电池的阴极性能”固态离子学111。153-159( 1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Dong SONG: "The Spinel Phases LiAl_yMn_<2-y>O_4 (y=0,1/12.1/9,1/6,1/3) and Li(Al,M)_<1/6>Mn_<11/6>O_4 (M=Cr,Co) as the cathode for Rechargeable Lithium Batteries"Solid State Ionics. 117. 151-156 (1999)
宋栋:“尖晶石相LiAl_yMn_<2-y>O_4 (y=0,1/12.1/9,1/6,1/3)和Li(Al,M)_<1/6>Mn_<11/
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masanobu NAKAYAMA: "Mixed Conduction for the Spinel Type (1-x) Li_<4/3>Ti_<5/3>O_4 System"Solid State Ionics. 117. 265-271 (1999)
Masanobu NAKAYAMA:“尖晶石型 (1-x) Li_<4/3>Ti_<5/3>O_4 系统的混合传导”固态离子学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WAKIHARA Masataka其他文献

WAKIHARA Masataka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WAKIHARA Masataka', 18)}}的其他基金

High power performance by defect introduction into spinel oxides for the usage of large-scale lithium ion battery
通过在尖晶石氧化物中引入缺陷来实现高功率性能,用于大型锂离子电池
  • 批准号:
    15350118
  • 财政年份:
    2003
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Intercalation-Control and Establishment of Reaction Sites
插层控制和反应位点的建立
  • 批准号:
    08355019
  • 财政年份:
    1996
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Crystal structure Control and Application to electrode materials of Low-expanding Composite Oxides
低膨胀复合氧化物晶体结构控制及其在电极材料中的应用
  • 批准号:
    07505029
  • 财政年份:
    1995
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Crystal structure Control and Development of functional electrode using Low-expanding Composite Spinel Oxides
低膨胀复合尖晶石氧化物晶体结构控制与功能电极开发
  • 批准号:
    07455336
  • 财政年份:
    1995
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fundamental study on the development of electrode materials for new lithium secondary batteries with high energy density.
高能量密度新型锂二次电池电极材料开发基础研究。
  • 批准号:
    06303009
  • 财政年份:
    1994
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Thin film of lithium magnesium silicates and its electrical conductivity.
硅酸锂镁薄膜及其电导率。
  • 批准号:
    62550559
  • 财政年份:
    1987
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Feasibility of Domestic Production of Graphite Anode Material for EV-Batteries
电动汽车电池石墨负极材料国产化的可行性
  • 批准号:
    10078947
  • 财政年份:
    2023
  • 资助金额:
    $ 7.23万
  • 项目类别:
    BEIS-Funded Programmes
I-Corps: Advanced anode material for lithium-ion batteries based on filled carbon nanotubes
I-Corps:基于填充碳纳米管的先进锂离子电池负极材料
  • 批准号:
    2134375
  • 财政年份:
    2021
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant
SBIR Phase I: HIGH CAPACITY ENERGY STORAGE ANODE MATERIAL
SBIR第一期:高容量储能阳极材料
  • 批准号:
    1843172
  • 财政年份:
    2019
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant
Development of metal phosphides as a novel anode material and application to intermediate-temperature fuel cells
新型阳极材料金属磷化物的开发及其在中温燃料电池中的应用
  • 批准号:
    16H04563
  • 财政年份:
    2016
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rutile TiO2 as a novel anode material for Na-ion battery
金红石型TiO2作为新型钠离子电池负极材料
  • 批准号:
    16K05954
  • 财政年份:
    2016
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Alternative Anode Material for Lithium Molten Salt Electrolysis
锂熔盐电解的替代阳极材料
  • 批准号:
    488354-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Alternative Anode Material for Lithium Molten Salt Electrolysis
锂熔盐电解的替代阳极材料
  • 批准号:
    485062-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Tin-nanoparticle as anode material in lithium-ion batteries - Influence of morphological and surface properties on the electrochemical performance
锡纳米粒子作为锂离子电池负极材料-形态和表面性质对电化学性能的影响
  • 批准号:
    280592434
  • 财政年份:
    2015
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Research Grants
Fabrication of nanoporous germanium for the use of anode material in lithium-ion batteries
用于锂离子电池负极材料的纳米多孔锗的制备
  • 批准号:
    26420727
  • 财政年份:
    2014
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
1) Metal Alloy anode Material; 2) Determining Rev Capacity of Graphites; 3) Investigate Aqueous Bind
1)金属合金负极材料;
  • 批准号:
    449795-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了