P-adic integration and Hartogs-Stawski's theorem

P-adic 积分和 Hartogs-Stawski 定理

基本信息

  • 批准号:
    10640045
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

The purpose of this reseach is to give a correct proof of Stawski's Theorem (non-archimedean version of Hartogs' Theorem) . The first step of the resarch is to put in order Stawski's outer linear measure theory. This was done by a good advice of Alain Escassut.A correct proof of Hartogs-Stawski's theorem was given when the underling field K is a complete, but not locally compact subfield of the p-adic complex field CィイD2pィエD2. If the value group |KィイD1xィエD1| is discrete, the following revised version of Stawski's theorem holds.Theorem 1 If a function f (x) = f(xィイD21ィエD2, xィイD22ィエD2, ..., xィイD2nィエD2) is analytic for each variable on the domain|xィイD21ィエD2|≦ RィイD21ィエD2,|xィイD22ィエD2|≦ RィイD22ィエD2,..., |xィイD2nィエD2|≦ RィイD2nィエD2then the function f(x) is an analytic function in the whole variables on the domain|xィイD21ィエD2|< RィイD21ィエD2,|xィイD22ィエD2|≦ ィイD2qィエD2RィイD22ィエD2,..., |xィイD2nィエD2|≦ ィイD2qィエD2RィイD2nィエD2where q = |π|< 1 (πis a prime element of K) .By symmetry we slightly extended the domain of analyticity of the functions. We also see that the Theorem holds if the field K is a general non-archimedean field which is complete, but not locally compact.
本文的目的是给出Hartogs定理的非阿基米德形式的Stawski定理的正确证明。研究的第一步是对Stawski的外线性测度理论进行整理。当从属域K是p-adic复域C D2p D2的完备但非局部紧子域时,给出了Hartogs-Stawski定理的一个正确证明.如果值组|K D1x D1|定理1如果函数f(x)= f(x ∈ D21 ∈ D2,x ∈ D22 ∈ D2,...,..)对于定义域上的每个变量,|x 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000| B2R B21 B2B B2,|x 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000| R |x x x x D2 n x D2|则函数f(x)是定义域上的全变量解析函数|x 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000| <RイD21 D2,|x 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000| ≦ィイD2qィエD2RィイD22ィエD2,..., |x x x x D2 n x D2|其中q =| π| <1(π是K的素元)。通过对称性,我们稍微扩展了函数的解析性域。如果域K是一般的非阿基米德完备域,但不是局部紧域,则该定理成立。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
遠藤幹彦: "Hartogs-Stawski's theorem in diserete valued fields" Lecture notes in pure and applied mathematics. (1998)
Mikihiko Endo:“离散值域中的 Hartogs-Stawski 定理”纯粹数学和应用数学讲义(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Endo M.: "Hartogs-Stawski's theorem in discrete valued fields."Lecture note in pure and applied mathematics.. 209. 77-96 (1999)
Endo M.:“离散值域中的 Hartogs-Stawski 定理。”纯粹数学和应用数学讲义.. 209. 77-96 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
森本,木田,山崎: "円分数の素因数分解(その4)"上智大学数学講究録. 42. (1999)
森本、木田、山崎:《圆分数的素因数分解(第4部分)》上智大学数学讲座记录42。(1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
森本、木田、山崎: "円分数の素因数分解(その4)"上智大学数学講究録. 42. (1999)
森本、木田、山崎:《日元分数的质因数分解(第4部分)》上智大学数学讲座记录42。(1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ENDOU Mikihiko其他文献

ENDOU Mikihiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了