Studies of the Structure of Operators on Function Spaces
函数空间算子结构的研究
基本信息
- 批准号:10640189
- 负责人:
- 金额:$ 0.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of function spaces plays an basic role in many branches of pure mathematics, for example, function analysis, differential equations, Fourier analysis, etc. and has become a useful tool in applied mathematics.In this research, we studied the space of diffrentiable functions from the point of view of unbounded derivations.The domain of a unbounded derivation in the space of continuous functions on a compact Hausdoruff space may be regarded as one of generalizations of the space of continuously differentiable functions. We investigated the structure of two important operators (that is, surjective linear isometries and small-bound isomorphisms) on such domain.At first, we decided extreme points of the unit sphere of the conjugate space of the domain equipped with the Cambern norm and used it to prove that surjective linear isometries of the domain are weighted composition operators induced by homeomorphisms of the underlying compact Hausdorff spaces. When the underlying topological spaces satisfy the first countability axiom, this result is extended to the second order derivations.We further studied small-bound isomorphisms on the domain and showed that if there is a small bound-isomorphism, then the underlying topological spaces are homeomorphic.As by-product, we obtained Korovkin type approximation theorems on the space of continuously differentiable functions on the unit interval of the real line.
函数空间理论在函数分析、微分方程、傅立叶分析等纯数学的许多分支中起着基础性的作用,并已成为应用数学中的一个有用工具。本文从无界导子的角度研究了可微函数空间,在紧Hausdoruff空间上的连续函数空间中无界导子的定义域可以是被认为是连续可微函数空间的推广之一。本文研究了这类整环上两个重要算子(满射线性等距和小界同构)的结构,首先确定了整环共轭空间单位球面的端点,并利用它证明了整环的满射线性等距是由紧Hausdorff空间的同胚诱导的加权复合算子。当基础拓扑空间满足第一可数性公理时,将这一结果推广到二阶导子,进一步研究了整环上的小有界同构,证明了如果存在小有界同构,则基础拓扑空间是同胚的.作为副产品,我们得到了真实的直线的单位区间上连续可微函数空间上的Korovkin型逼近定理.
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Go Hirasawa: "Korovkin type approximation theorems on the space of continuously differentiable functions"Approximation theory and its applications. in press.
平泽刚:《连续可微函数空间上的科洛夫金型逼近定理》逼近理论及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiko Matsumoto: "Surjective linear isometries of the domain of a*-derivation equipped with the Cambern norm"Mathematische Zeitshrift. 230. 185-200 (1999)
Toshiko Matsumoto:“配备 Cambern 范数的 a* 导数域的满射线性等距”Mathematische Zeitshrift。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Matsumoto: "Suvjective linear isometries of the domain of a *-derivation equipped with the Cambern norm" Mathematische Zeitschrift. 230. 185-200 (1999)
T.Matsumoto:“配备坎本范数的*-导数域的主观线性等距”Mathematicische Zeitschrift。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiko Matsumoto: "Surjective linear isometrics of the domain of a *-derivation equipped with the Cambern norm"Mathematische Zeitshrift. 230. 185-200 (1999)
Toshiko Matsumoto:“配备坎伯范数的*-导数域的满射线性等距”Mathematische Zeitsrift。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiko Matsumoto: "Small bound isomorphisms of the domain of a closed *-derivation"International Journal of Mathematics and Mathematical Sciences. in press.
Toshiko Matsumoto:“封闭*-导数域的小界同构”国际数学与数学科学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WATANABE Seiji其他文献
WATANABE Seiji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WATANABE Seiji', 18)}}的其他基金
Factors involved in an increase of the miscarriage rate with maternal age: Attempt to improve artificially oocyte quality in human
流产率随母亲年龄增加而增加的因素:人工改善人类卵母细胞质量的尝试
- 批准号:
24592455 - 财政年份:2012
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prevention for the occurrence of the secondary pulmonary embolism related to the endothelial damage of pulmonary vasculature.
预防与肺血管内皮损伤有关的继发性肺栓塞的发生。
- 批准号:
21592027 - 财政年份:2009
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the new role of nitric oxide in the cortical collecting duct that regulates and acid base balance
阐明一氧化氮在皮质集合管中调节酸碱平衡的新作用
- 批准号:
18591206 - 财政年份:2006
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interaction between the endothelium injury of pulmonary vessels and the activated platelets on the formation of post operative pulmonary embolism
肺血管内皮损伤与活化血小板的相互作用对术后肺栓塞形成的影响
- 批准号:
17591655 - 财政年份:2005
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AUTONOMIC NERVE ACTIVITY AND PLATELET ACTIVATION RELATED TO THE PERIOPERATIVE CORONARY SPASM IN THE PATIENTS WITH ISCHEMIC HEART DISEASE
缺血性心脏病患者围手术期冠状动脉痉挛相关的自主神经活动和血小板活化
- 批准号:
14571478 - 财政年份:2002
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Function Spaces and unbounded derivations
函数空间和无界导数的研究
- 批准号:
12640191 - 财政年份:2000
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CORONARY SPASM INDUCED WITH PARASYMAPTHETIC ACTIVATION IN THE PATIENTS WITH ISCHEMIC HEART DISEASE
缺血性心脏病患者副交感激活引起的冠状动脉痉挛
- 批准号:
11671530 - 财政年份:1999
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hemodynamics and Endothelial Function of Perioperative Myocardial Ischemia
围手术期心肌缺血的血流动力学和内皮功能
- 批准号:
09671594 - 财政年份:1997
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Characterization of conically averaged linear operators
圆锥平均线性算子的表征
- 批准号:
562719-2021 - 财政年份:2021
- 资助金额:
$ 0.7万 - 项目类别:
University Undergraduate Student Research Awards
Perturbations of linear operators and the Invariant Subspace Problem
线性算子的扰动和不变子空间问题
- 批准号:
DDG-2019-07097 - 财政年份:2021
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Development Grant
Perturbations of linear operators and the Invariant Subspace Problem
线性算子的扰动和不变子空间问题
- 批准号:
DDG-2019-07097 - 财政年份:2020
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Development Grant
Perturbations of linear operators and the Invariant Subspace Problem
线性算子的扰动和不变子空间问题
- 批准号:
DDG-2019-07097 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Development Grant
Linear operators on function spaces and geometric topology
函数空间和几何拓扑上的线性算子
- 批准号:
17K05241 - 财政年份:2017
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on the structures of analytic function spaces and linear operators on them
解析函数空间及其线性算子的结构研究
- 批准号:
15K04905 - 财政年份:2015
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric-topological study on dynamics of infinite dimensional linear operators
无限维线性算子动力学的几何拓扑研究
- 批准号:
26400080 - 财政年份:2014
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semigroups of linear operators
线性算子半群
- 批准号:
8809-2009 - 财政年份:2014
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Subspace perturbation problems for linear operators
线性算子的子空间扰动问题
- 批准号:
254425963 - 财政年份:2014
- 资助金额:
$ 0.7万 - 项目类别:
Research Grants
Efficient reconstruction of functions using eigenfunctions of linear operators
使用线性算子的特征函数高效重构函数
- 批准号:
244772350 - 财政年份:2013
- 资助金额:
$ 0.7万 - 项目类别:
Research Grants