Exploratory study for structure of the multidimensional data and its application to the clinical data.

多维数据结构的探索性研究及其在临床数据中的应用。

基本信息

  • 批准号:
    10680318
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

The unbalanced development of facial skeleton makes one's feature abnormal. The dental treatment is often carried out to such patients. In this study, we examine relationship between therapeutic effects and the growth of mandibular bone. The growth pattern of facial skeleton has a great individual variety. We realized the clinical problem as the following statistical problem : The classification of the unbalanced growth data considering random effects. We developed the statistical methods and the softwares to carry out data analysis effectively.The achievements of our study were summarized as follows.(1) The data base for the analysis was constructed. The items were longitudinal measurements of the length of various sites of the mandibular bone (by using x-ray photographs), the age at each examination and therapeutic effects.(2) The graphical software was developed to visualize the process of development of facial bone.(3) The Gompertz curve was fitted to an individual growth, and the estimated Gompertz parameters were classified with the k-means method to explore the outliers or unknown backgrounds that was supposed to give effect to the response variables.(4) The growth curve model with random effects were proposed. Individual response profiles were fitted by the polynomial regression model, and the fitted regression coefficients were classified based on the normal mixture model.(5) The software named "NKMeans" was developed to estimate normal mixture model. It is effective on data including missing values or outliers.
面部骨骼发育的不平衡,使人的五官畸形。牙科治疗通常是对这些患者进行的。在本研究中,我们探讨治疗效果与下颌骨生长的关系。面部骨骼的生长方式有很大的个体差异。我们将临床问题归结为以下统计问题:考虑随机效应的不平衡生长数据的分类。我们开发了统计方法和软件来有效地进行数据分析。(1)建立了分析的数据库。项目包括下颌骨各部位长度的纵向测量(使用X线照片)、每次检查的年龄和治疗效果。(2)开发了面骨发育过程可视化软件。(3)将Gompertz曲线拟合到个体生长,并使用k均值方法对估计的Gompertz参数进行分类,以探索应该对响应变量产生影响的离群值或未知背景。(4)建立了具有随机效应的生长曲线模型。通过多项式回归模型拟合个体响应曲线,并基于正态混合模型对拟合的回归系数进行分类。(5)开发了“NKMeans”软件对正态混合模型进行估计。它对包含缺失值或离群值的数据有效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SATOH Kenichi其他文献

SATOH Kenichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SATOH Kenichi', 18)}}的其他基金

Improvement of confidence Interval for linear varying coefficients and its application to SEM
线性变化系数置信区间的改进及其在SEM中的应用
  • 批准号:
    23700337
  • 财政年份:
    2011
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Statistical inference on linear varying coefficients applying longitudinal discrete distribution
应用纵向离散分布对线性变化系数进行统计推断
  • 批准号:
    21700306
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

Random Effects Modelling and Inference for Skewed Data of Complex Correlation Structures
复杂相关结构的倾斜数据的随机效应建模和推理
  • 批准号:
    RGPIN-2020-04751
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Random effects modeling of longitudinal and spatial data with and without zero-inflation.
有和没有零通货膨胀的纵向和空间数据的随机效应建模。
  • 批准号:
    RGPIN-2017-04246
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of multilevel modelling: An evaluation of the assumption of no correlation between explanatory variables and random effects
多级建模的应用:解释变量与随机效应之间不相关的假设的评估
  • 批准号:
    2604266
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
Random Effects Modelling and Inference for Skewed Data of Complex Correlation Structures
复杂相关结构的倾斜数据的随机效应建模和推理
  • 批准号:
    RGPIN-2020-04751
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving statistical inference when interest focuses on the identification of extreme random effects in clustered data
当兴趣集中于识别集群数据中的极端随机效应时,改进统计推断
  • 批准号:
    10179473
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
Improving statistical inference when interest focuses on the identification of extreme random effects in clustered data
当兴趣集中于识别集群数据中的极端随机效应时,改进统计推断
  • 批准号:
    10665751
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
Statistical inference in zero-inflated random effects models with missing data
缺失数据的零膨胀随机效应模型的统计推断
  • 批准号:
    RGPIN-2016-04322
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Random effects modeling of longitudinal and spatial data with and without zero-inflation.
有和没有零通货膨胀的纵向和空间数据的随机效应建模。
  • 批准号:
    RGPIN-2017-04246
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Random Effects Modelling and Inference for Skewed Data of Complex Correlation Structures
复杂相关结构的倾斜数据的随机效应建模和推理
  • 批准号:
    RGPIN-2020-04751
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inference in zero-inflated random effects models with missing data
缺失数据的零膨胀随机效应模型的统计推断
  • 批准号:
    RGPIN-2016-04322
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了