Robust Federated Learning for Imperfect Decentralised Data
针对不完美的去中心化数据的鲁棒联邦学习
基本信息
- 批准号:DP220100768
- 负责人:
- 金额:$ 24.82万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2022
- 资助国家:澳大利亚
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop a next-generation robust federated learning framework to tackle the challenging scenarios of imperfect decentralised data in real applications, e.g. mobile phones and the Internet of Things (IoT) devices. The outcomes will bring great benefits to a broad range of industry sectors by providing novel large-scale intelligent applications with privacy preservation. The proposed method will advance the development of a cutting-edge technique to develop new intelligent applications in a decentralised and privacy-sensitive scenario. This game-changing research will advance current data mining and artificial intelligence research from centralised intelligence to decentralised intelligence with a collaboration network.
该项目旨在开发下一代强大的联邦学习框架,以解决真实的应用程序中不完美的分散数据的挑战性场景,例如移动的电话和物联网(IoT)设备。这些成果将通过提供具有隐私保护的新型大规模智能应用,为广泛的行业领域带来巨大利益。该方法将推动尖端技术的发展,以在分散和隐私敏感的场景中开发新的智能应用程序。这项改变游戏规则的研究将推动当前的数据挖掘和人工智能研究从集中式智能到具有协作网络的分散式智能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Chengqi Zhang其他文献
Prof Chengqi Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Chengqi Zhang', 18)}}的其他基金
Dialogue-to-Action:Towards A Self-Evolving Enterprise Intelligent Assistant
从对话到行动:迈向自我进化的企业智能助手
- 批准号:
LP180100654 - 财政年份:2019
- 资助金额:
$ 24.82万 - 项目类别:
Linkage Projects
Large-scale spatio-temporal data hashing for efficient data analytics
大规模时空数据哈希以实现高效数据分析
- 批准号:
DP180100966 - 财政年份:2018
- 资助金额:
$ 24.82万 - 项目类别:
Discovery Projects
Cohort discovery and activity mining for policy impact prediction
用于政策影响预测的群组发现和活动挖掘
- 批准号:
LP160100630 - 财政年份:2016
- 资助金额:
$ 24.82万 - 项目类别:
Linkage Projects
Deep Pattern Mining for Dynamic Real-time Enterprise Scale Pricing
用于动态实时企业规模定价的深度模式挖掘
- 批准号:
LP140100569 - 财政年份:2015
- 资助金额:
$ 24.82万 - 项目类别:
Linkage Projects
Location-aware Frequent Pattern Mining from Uncertain Spatial Transaction Data
不确定空间事务数据中的位置感知频繁模式挖掘
- 批准号:
DP140100545 - 财政年份:2014
- 资助金额:
$ 24.82万 - 项目类别:
Discovery Projects
Mining complex concurrency relationship patterns for dynamic customer/asset interaction modelling through novel industrial behaviour networks
通过新颖的工业行为网络挖掘复杂的并发关系模式,以进行动态客户/资产交互建模
- 批准号:
LP120100566 - 财政年份:2012
- 资助金额:
$ 24.82万 - 项目类别:
Linkage Projects
Mining Multiple Information Sources through Collaborative and Comparative Analysis
通过协作和比较分析挖掘多种信息源
- 批准号:
DP1093762 - 财政年份:2010
- 资助金额:
$ 24.82万 - 项目类别:
Discovery Projects
Data Mining of Activity Transactions to Strengthen Debt Prevention
活动交易数据挖掘,加强债务预防
- 批准号:
LP0775041 - 财政年份:2007
- 资助金额:
$ 24.82万 - 项目类别:
Linkage Projects
Efficient Techniques for Mining Exceptional Patterns
挖掘异常模式的有效技术
- 批准号:
DP0667060 - 财政年份:2006
- 资助金额:
$ 24.82万 - 项目类别:
Discovery Projects
Efficient Strategies for Mining Negative Association Rules
挖掘负关联规则的有效策略
- 批准号:
DP0449535 - 财政年份:2004
- 资助金额:
$ 24.82万 - 项目类别:
Discovery Projects
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Standard Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
- 批准号:
24K20845 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
- 批准号:
2348279 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Standard Grant
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Standard Grant
Federated Reinforcement Learning Empowered Point Cloud Video Streaming
联合强化学习赋能点云视频流
- 批准号:
24K14927 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Standard Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
- 批准号:
2340482 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Continuing Grant
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
- 批准号:
24K20781 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists