Studies of the finiteness and the comparability for regular rings

正则环的有限性和可比性研究

基本信息

  • 批准号:
    11640031
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

The aim of this Grant-in-Aid for Scientific Research (C)(2) was to investigate properties of the direct finiteness and comparability for regular rings. For unit-regular rings satisfying weak comparability (which are typical regular rings with some finiteness condition), we proposed three problems as following : (A) Do these rings have the property (DF) or special (DF)? (B) Do factor rings and matix rings of above regular rings have (DF) or special (DF)? (C) Is the property of weak comparability inherited by matrix rings?The property (DF)(resp.special (DF)) means that finite direct sums of any directly finite (resp.any isomorphic directly finite) projective modules over regular rings are directly finite. In the first year, we mainly studied problems (A) and (B), and proved that unit-regular rings R satisfying weak comparability have the strict 2-unperforation property for the family of all right ideals of R.And using this result, we showed that factor rings and matrix rings of R have special (DF). In the next year, we studied the problem (C), and we could prove that every unit-regular rings satisfying weak comparability have the strict unperforation property for the family of all finitely generated projective modules in general, and using this result, we showed that weak comparability for unit-regular rings is inheritedby matrix rings. These results are in "Unit-regular rings satisfying weak comparability" (to appear in Comm.Algebra) and "Regular rings with comparability and related properties" (submitted).
本科学研究资助(C)(2)的目的是研究正则环的直接有限性和可比性的性质。对于满足弱可比性的单位正则环(具有一定有限条件的典型正则环),我们提出了以下三个问题:(A)这些环是否具有性质(DF)或特殊(DF)?(二)上述正则环的因子环和矩阵环是否有(DF)或特殊(DF)?(C)弱可比性是否被矩阵环继承?属性(DF)(p。特殊(DF))表示任何直接有限(相对于。正则环上的任何同构直有限射影模都是直有限的。在第一年,我们主要研究了问题(A)和(B),证明了满足弱可比性的单位正则环R对于R的全右理想族具有严格的2-不穿孔性质,并利用这一结果证明了R的因子环和矩阵环具有特殊的(DF)。在接下来的一年里,我们研究了问题(C),证明了满足弱可比性的单位正则环对于所有有限生成的射影模族一般都具有严格的不穿孔性质,并利用这一结果证明了单位正则环的弱可比性被矩阵环继承。这些结果在“满足弱可比性的单位正则环”(将出现在Comm.Algebra)和“具有可比性及相关性质的正则环”(已提交)中。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mamoru Kutami: "Unit-regular rings satisfying weak comparability"Communications in Algebra. (発表予定).
Mamoru Kutami:“满足弱可比性的单位正则环”代数通讯(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tetsuhiko Miyoshi: "Direction and Curvature of the Cracks in two-dimensional elastic body"Japan J.Industrial and Applied Math.. 17・2. 295-307 (2000)
三好哲彦:“二维弹性体中裂纹的方向和曲率”日本工业应用数学杂志17・2(2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jiro Kado: "CS-property of direct sums of uniform modules"Trends in Mathemetics, Birkhauser. (発表予定).
Jiro Kado:“一致模直和的 CS 性质”数学趋势,Birkhauser(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroshi Yoshimura: "Finitely pseudo-Frobenius rings"Trends in Mathematics,Birkhauser. (発表予定).
Hiroshi Yoshimura:“有限伪弗罗贝尼乌斯环”数学趋势,Birkhauser(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kiyoichi Oshiro: "Theories of Harada in antinian rings and applications to classical artinian rings."Trends in Mathematics.Birkhauser. (発表予定).
Kiyoichi Oshiro:“Harada 的 Antinian 环理论及其在经典 Artinian 环中的应用。”数学趋势。Birkhauser(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUTAMI Mamoru其他文献

KUTAMI Mamoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUTAMI Mamoru', 18)}}的其他基金

VON NEUMANN REGULAR RINGS WITH COMPARABILITIES
具有可比性的冯诺依曼常规环
  • 批准号:
    21540041
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of the finiteness for regular rings
正则环的有限性研究
  • 批准号:
    09640042
  • 财政年份:
    1997
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了