Schneider's p-adic L-function and the conjecture of Birch and Swinnerton-Dyer
Schneider 的 p 进 L 函数以及 Birch 和 Swinnerton-Dyer 的猜想
基本信息
- 批准号:11640048
- 负责人:
- 金额:$ 0.64万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let E be an elliptic curve over Q that is not of type CM.We choose a prime p that is a divisor of the conductor of E.Then we can consider an arithmetic group Γ.⊂ PGL_2(Q_p) and an automorphic form ψof weight 2 w.r.t. Γ on the p-adic upper half plane corresponding to E.Assume Γ is torsion-free for simplicity. Then ψ is realized as a p-adic Poincare series corresponding to an element 1≠γ∈Γ. Take another element 1≠δ∈Γ and choose the coordinate of P^1 so that 0 and ∞ are the fixed points of δ on P^1(Q_p). We define L(s, φ, δ)=Σ_<g∈<δ>\Γ/<γ>>{χ(g・β)^<1-s>-χ(g・α)^<1-s>}. Here α, β are the fixed points of γ, and for the ratio q_δ of eigenvalues of δ we choose a suitable character χ : Q^X_p/q^Z_δ→1+p^<1+[1/(p-1)]>Z_p : (We have to modify this definition when δand γ are proportional in Γ/[Γ, Γ]) Then, we have (i) L (1, ψ, δ) = 0, (ii) d/(ds)L(s, φ, δ)|_<s=1>=Log_χ(<γ|δ>). Here Log_χ is defined by the relation d/(ds)χ(t)^s=Log_χ(t)χ(t)^s and <|> : Γ/[Γ, Γ]×Γ/[Γ, Γ]→Q^X_p is the Manin-Drinfeld pa … More iring which gives the p-adic periods of the jacobian variety of the Mumford curve uniformized by Γ. This L-function was introduced by P.Schneider and our purpose is to find a recipe to give an arithmetically nice δ and to establish the Birch-Swinnerton-Dyer conjecture for this L-function including some numerical evidences.At first we have to find a recipe to give δ. To do that we looked at an easier version of the above conjecture. Let (|) : Γ/[Γ, Γ]×Γ/[Γ, Γ]→Z be the pairing giving the length of intersection of chains on the quotient by Γ of the Bruhat-Tits building. Then, ord_p(<|>)=(|). Now the simplified conjecture is "∃δ, ∀γ, (γ|δ)=0⇔Q-rank of E is positive." In the elliptic modular case, the path on the upper half plane from 0 to √<-1>. ∞ plays the role for δ. However at present, we could not find a nice recipe for our δ. This means that although δ exists as a linar functional of the space of certain p-adic automorphic forms, we don't know whether δ exists as in a geometric sense as above (or as an element of a definite quaternion algebra). Less
设E是Q上非CM型椭圆曲线,我们选取一个素数p作为E的导子的因子,则我们可以考虑一个算术群Γ.在对应于E的p-adic上半平面上的Γ。为了简单起见,假设Γ是无挠的。然后将π实现为对应于元素1 <$γ∈Γ的p进Poincare级数。取另一个元素1 <$δ∈Γ,选择P^1的坐标,使得0和∞是δ在P^1(Q_p)上的不动点。定义L(s,φ,δ)= x_<g∈<δ>\r/<γ>>{x(g·β)^<1-s>-x(g·α)^<1-s>}.这里α,β是γ的不动点,对于δ的特征值之比q_δ,我们选择一个合适的特征标χ:Q^X_p/q^Z_δ→1+p^<1+[1/(p-1)]>Z_p:(当δ和γ在Γ/[Γ,Γ]中成比例时,我们必须修改这个定义)那么,我们有(i)L(1,φ,δ)= 0,(ii)d/(ds)L(s,φ,δ)|_<s=1>=Log_X(<γ| δ>)。这里,Log_x由关系d/(ds)x(t)^s=Log_x(t)x(t)^s定义,并且|>:r/[r,r]× r/[r,r]→Q^X_p是Manin-Drinfeld路径 ...更多信息 环,给出了由Γ均匀化的Mumford曲线的雅可比簇的p-adic周期。这个L-函数是由P.Schneider引入的,我们的目的是找到一个给出算术量δ的方法,并建立关于这个L-函数的Birch-Swinnerton-Dyer猜想,包括一些数值证据。为了做到这一点,我们看了上述猜想的一个更简单的版本。让(|):Γ/[Γ,Γ]×Γ/[Γ,Γ]→Z是给出Bruhat-Tits建筑的Γ商上的链的交叉长度的配对。然后,ord_p(<|>)=(|).现在简化的猜想是“<$δ,<$γ,(γ| δ)=0惠Q秩为正。“在椭圆模的情况下,上半平面上从0到0的路径<-1>。∞对δ起作用。然而,目前,我们无法为我们的δ找到一个好的配方。这意味着虽然δ作为某些p进自守形式空间的线性泛函存在,但我们不知道δ是否像上面那样在几何意义上存在(或者作为一个定四元数代数的元素)。少
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KURIHARA Akira其他文献
KURIHARA Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KURIHARA Akira', 18)}}的其他基金
Schneider's p-adic L-function and the conjecture of Birch and Swinnerton-Dye
Schneider 的 p 进 L 函数以及 Birch 和 Swinnerton-Dye 猜想
- 批准号:
09640070 - 财政年份:1997
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Field Surveys and Theoretical Studies on the new Social Movements in Contemporary Japan.
当代日本新社会运动的田野调查与理论研究。
- 批准号:
07452011 - 财政年份:1995
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2022
- 资助金额:
$ 0.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Elliptic curve analogues of arithmetic sequences
算术序列的椭圆曲线类似物
- 批准号:
573026-2022 - 财政年份:2022
- 资助金额:
$ 0.64万 - 项目类别:
University Undergraduate Student Research Awards
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2021
- 资助金额:
$ 0.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2020
- 资助金额:
$ 0.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Algorithms for determining supersingular elliptic curve endomorphism rings
确定超奇异椭圆曲线自同态环的算法
- 批准号:
544841-2019 - 财政年份:2019
- 资助金额:
$ 0.64万 - 项目类别:
University Undergraduate Student Research Awards
Study and development of advanced elliptic curve cryptosystem
先进椭圆曲线密码体制的研究与开发
- 批准号:
19K11966 - 财政年份:2019
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2019
- 资助金额:
$ 0.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Active Attacks on FourQ-Based Hardware Implementations of Elliptic Curve Cryptosystems
对基于 FourQ 的椭圆曲线密码系统硬件实现的主动攻击
- 批准号:
529069-2018 - 财政年份:2018
- 资助金额:
$ 0.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Elliptic Curve Computations
椭圆曲线计算
- 批准号:
527578-2018 - 财政年份:2018
- 资助金额:
$ 0.64万 - 项目类别:
University Undergraduate Student Research Awards
Elliptic Curve Computations
椭圆曲线计算
- 批准号:
527579-2018 - 财政年份:2018
- 资助金额:
$ 0.64万 - 项目类别:
University Undergraduate Student Research Awards