Asymptotic properties of heat kernels and their applications
热核的渐近性质及其应用
基本信息
- 批准号:11640163
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ichihara has studied about some relationships between the spectrums of a second order elliptic partial differential operator and the asymptotic properties of the associated heat kernel. First, the exact decay order of the heat kernels in time has been given for a class of complete, simply-connected, negatively curved Riemannian manifolds with asymptotically constant negative sectional curvature. In particular, it has been clarified that there exists an intimate connection between the decay part of polynomial order of the heat kernel and a term of the perturbation of constant negative curvature. Furthermore large deviation principles of the Donsker-Varadhan type have been established for a class of diffusion processes with strong transience property. It is well known that the usual large deviation for a Markov process does not hold when the infimum of the spectrums for its infinitesimal generator ×(-1) is positive. Ichihara has shown that it is still possible to get a nice large deviation principle so far as the pinned process is concerned if an appropriate rate function is chosen.Osada has constructed a Gibbs measure on the path space under the existence of interaction potential and has proved its uniquness in a class of Gibbs measures. Making use of the theory of Dirichlet spaces, a diffusion process having the above Gibbs measure as an invariant probabilty measure has been constructed on the path space. Furthermore Osada has constructed diffusion processes on the Sierpinski Carpet and has given estimates for their transition densities.Chiyonobu has carried out precise estimates for integrations of functionals in an infinite dimensional space, which appear in statistical mechanics.
Ichihara研究了二阶椭圆型偏微分算子的谱与其热核的渐近性质之间的关系。首先,我们给出了一类完备的单连通负曲率黎曼流形的热核在时间上的精确衰减阶,该流形具有渐近常负截面曲率。特别是,它已被澄清,有一个密切的联系之间的衰变部分的多项式阶的热核和一个长期的扰动的常数负曲率。进而对一类具有强瞬态性的扩散过程建立了Donsker-Varadhan型大偏差原理。众所周知,当马氏过程的无穷小生成元×(-1)的谱的下确界为正时,通常的大偏差不成立。Ichihara指出,对于钉扎过程,只要选择适当的速率函数,仍然可以得到一个很好的大偏差原理,Osada在相互作用势存在的情况下构造了一个路径空间上的Gibbs测度,并证明了它在一类Gibbs测度中的唯一性.利用Dirichlet空间理论,在路径空间上构造了一个以上述Gibbs测度为不变概率测度的扩散过程.此外,Osada构造了扩散过程的谢尔宾斯基地毯,并给予估计其过渡密度。千代信进行了精确的估计积分的泛函在一个无限维空间,这出现在统计力学。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
市原完治: "Long time asymptotics for heat kernels on negatively curved Riemannian manifolds"Preprint series in Math.Sci.,School of Informatics. and Sciences and Graduate School of Human Inform.,Nagoyallniv.. 3. 1-30 (2000)
Kanji Ichihara:“负弯曲黎曼流形上的热核的长时间渐近”数学科学预印本系列,信息学与科学学院和人类信息研究生院,Nagoyallniv.. 3. 1-30 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
長田博文: "Gibbs measures relative to Brownian motion"Annals of Probability. 27. 1183-1207 (1999)
Hirofumi Nagata:“与布朗运动相关的吉布斯测度”《概率年鉴》27。1183-1207(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
市原完治: "Large deviation for pinned covering diffusion"Preprint series in Math.Sci.,School of Informatics and Sciences and Graduate School of Human Inf.,Nagoya Univ.. (発表予定).
Kanji Ichihara:名古屋大学信息科学学院和人类信息研究生院数学科学预印本系列“固定覆盖扩散的大偏差”(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
市原完治: "Long time asymptotics for heat kernels on negatively curved Riemannian manifolds"Preprint series in Math.Sci.'School of Informatics and Sciences and Graduate School of Human Inf.,Nagoya Univ.. 3. 1-30 (2000)
市原宽司:“负曲黎曼流形上的热核的长时间渐近”Math.Sci.名古屋大学信息科学学院和人类信息研究生院的预印本系列。3. 1-30 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kanji Ichihara: "Long time asymtotics for heat kemels on negatively curved Riemannian manifolds."Preprint series in Math.Sci., School of Informatics and Sciences and Graduate School of Human Informatics ; Nagoya University. 3. 1-30 (2000)
Kanji Ichihara:“负弯曲黎曼流形上的热凯梅尔的长期渐近性。”数学科学、信息学与科学学院和人类信息学研究生院的预印本系列;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ICHIHARA Kanji其他文献
ICHIHARA Kanji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ICHIHARA Kanji', 18)}}的其他基金
Asymptotics of heat kernels on non-euclidean spaces and spectrum
非欧空间和谱上热核的渐近
- 批准号:
15540189 - 财政年份:2003
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotics of heat kernels and principal eigenvalue problems for Laplacians
热核的渐近性和拉普拉斯算子的主特征值问题
- 批准号:
13640165 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)