Studies on Multidimensional Analysis of Longitudinal Categorical Data
纵向分类数据多维分析研究
基本信息
- 批准号:11680330
- 负责人:
- 金额:$ 0.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project was to study the methods for analyzing longitudinal categorical data to quantify individuals' changes. We focused on an indicator matrix whose rows and columns associated with the individuals over time-points and with categories, respectively. From this data matrix, individual changes cannot be quantified by the existing quantification method, To deal with this difficulty, we developed constrained and regularized methods for quantification.In the constrained method, the growth curve constraint is imposed on the scores to be assigned to the individuals over time-points : the scores is constrained to be a polynomial in time. The usefulness of this method we developed was shown by its application to real data. This method was further extended to simultaneously perform the clustering of individuals.In the regularized method, the loss function in the existing method is combined with a penalty function, to form a penalized loss function. This method is subdivided into two approaches. One is to define the penalty using first order differences of scores, which requires the homogeneity of individual scores over time-points. The other is to treat the scores as natural cubic spline functions of time and to define the penalty using the second order derivative of the splines, assuming individual scores to change smoothly with time. Both methods gave promising results in simulation and real data analysis.
本项目的目的是研究分析纵向分类数据以量化个体变化的方法。我们将重点放在一个指标矩阵上,其行和列分别与时间点上的个人和类别相关联。针对现有量化方法不能对个体变化进行量化的问题,提出了约束正则化量化方法,在约束方法中,对个体在时间点上的得分施加增长曲线约束:将得分约束为时间上的多项式。通过对实际数据的应用,证明了该方法的有效性。在正则化方法中,将已有方法中的损失函数与惩罚函数相结合,形成惩罚损失函数。这种方法细分为两种方法。一种是使用分数的一阶差异来定义处罚,这要求个人分数在时间点上的同质性。另一种是将分数视为时间的自然三次样条函数,并假设每个分数随时间平滑变化,使用样条线的二阶导数来定义惩罚。这两种方法在仿真和实际数据分析中都取得了令人满意的结果。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kohei Adachi: "Optimal scaling of a longitudinal choice variable with time-varying representation of individuals"British Journal of Mathematical and Statistical Psychology. 53. 233-253 (2000)
Kohei Adachi:“纵向选择变量的最佳缩放与个体时变表示”英国数学与统计心理学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
足立浩平: "多変量カテゴリカルデータの数量化と主成分分析."心理学評論. 43巻・4号(印刷中). (2000)
Kohei Adachi:“多元分类数据的量化和主成分分析”,第 43 卷,第 4 期(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kohei Adachi: "Homogeneity and smoothness analysis for quantifying a longitudinal categorical variable"Proceedings of the International Conference on Measurement and Multivariate Analysis, Volume 1. 58-60 (2000)
Kohei Adachi:“量化纵向分类变量的均匀性和平滑度分析”国际测量和多元分析会议记录,第 1 卷 58-60 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADACHI Kohei其他文献
ADACHI Kohei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADACHI Kohei', 18)}}的其他基金
New Developments in Factor Analysis Underlain by Fixed Models
固定模型下因子分析的新进展
- 批准号:
23500347 - 财政年份:2011
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on principal component analysis for three-way data of inputs and outputs
输入输出三向数据的主成分分析研究
- 批准号:
20500256 - 财政年份:2008
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Joint Prcc ustesAnalysis of Three-Way Data
三向数据联合分析研究
- 批准号:
18500212 - 财政年份:2006
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments in penalized optimal scoring
惩罚性最优评分的新进展
- 批准号:
16500180 - 财政年份:2004
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Psychometric Studies on Quantification and Simple Structure Analysis of Multivariate Categorical Data
多元分类数据量化和简单结构分析的心理测量研究
- 批准号:
13610176 - 财政年份:2001
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
New developments in penalized optimal scoring
惩罚性最优评分的新进展
- 批准号:
16500180 - 财政年份:2004
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)