Study of State Space Search by Lagrangian Method for Combinatorial Problems
组合问题的拉格朗日法状态空间搜索研究
基本信息
- 批准号:11680363
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have proposed a neural network called LPPH which solves the satisfiability problem of propositional calculus (SAT) more efficiently than the conventional methods. The LPPH is based on Lagrangian method, and its dynamics is represented by a set of continuous differential equations. In this project, we investigate the following.(1) The LPPH dynamics has a parameter called "decay factor". We discusse the relationship between the decay factor and the global convergence property. From the result of the discussion we proposed the LPPH dynamics which has two types of decay factor. They are called long and short term memory, respectively. By experiment their effectiveness is proved.(2) Another improvement of the dynamics is proposed. The dynamics has parameters called "coefficients of attention". By controlling the coefficients, sets of clauses of the CNF which are hard to satisfy are found and satisfied by priority. Experimental results show the dynamics is effective especially for difficult problems.(3) A routing algorithm which is based on Lagrangian method is proposed. Some small but congested routing problems are solved more effectively then the conventional methods.(4) We investigate the cases where some preliminary solution is given with a CNF.The preliminary solution comes from the background knowledge, the preliminary search, the heuristics, or the additional constraint such that the solution to be found must be similar to the given one. We introduce "bias" to the LPPH dynamics to deal with the preliminary solution. Experimental results show that the proposed dynamics can effectively find the nearest or approximately nearest solution to the given preliminary solution even if it includes some uncertainties and/or errors.
我们提出了一种称为LPPH的神经网络,它比传统的方法更有效地解决了命题演算的可满足性问题。LPPH基于拉格朗日方法,其动力学由一组连续的微分方程组表示。在本课题中,我们主要研究了以下几个方面:(1)LPPH动力学中有一个称为“衰变因子”的参数。讨论了衰减因子与全局收敛性质之间的关系。根据讨论的结果,我们提出了具有两种衰变因子的LPPH动力学。它们分别被称为长期记忆和短期记忆。通过实验证明了它们的有效性。(2)提出了对动力学的另一种改进。动力学中的参数被称为“注意系数”。通过对系数的控制,找到CNF中难以满足的子句集合,并优先满足。实验结果证明了该算法的有效性。(3)提出了一种基于拉格朗日方法的布线算法。与传统方法相比,该方法能更有效地解决一些较小但拥塞的路径问题。(4)我们研究了使用CNF给出一些初步解的情况,这些初步解来自背景知识、初步搜索、启发式算法或附加约束,使得所要找到的解必须与给定的解相似。我们将“偏差”引入到LPPH动力学中来处理初步解。实验结果表明,即使存在一定的不确定性和/或误差,所提出的动力学方法也能有效地找到与给定初始解最接近或近似最接近的解。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masahiro Nagamatu et al: "Using Approximate Solution for Solving SAT by Lagrange Programming Neural Network"Proceedings of the 6the International Conference on Soft Computing. 652-659 (2000)
Masahiro Nagamatu 等人:“利用拉格朗日编程神经网络求解 SAT 的近似解”第六届软计算国际会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masahiro Nagamatu,Hirohisa Aman,Kazunori Miyamoto and Torao Yanaru: "Solving SAT with Hint by Lagrange Programming Neural Network"International Journal of Chaos Theory and Applications. Vol.5,No.3. 11-21 (2000)
Masahiro Nagamatu、Hirohisa Aman、Kazunori Miyamoto 和 Torao Yanaru:“通过拉格朗日编程神经网络提示解决 SAT”国际混沌理论与应用杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shakeel Ismail,Makio Hoshiura,Masahiro Nagamatu and Torao Yanaru: "Neurocomputing for Wire Routing Problem"Proceeding of the International Symposium on Medical Informatics and Fuzzy Technology. 107-111 (1999)
Shakeel Ismail、Makio Hoshiura、Masahiro Nagamatu 和 Torao Yanaru:“用于布线问题的神经计算”医学信息学和模糊技术国际研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shakeel Ismail, Makio Hoshiura, Masahiro Nagamatu and Torao Yanaru: "Neurocomputing for Wire Routing Problem"Proceedings of the International Symposium on Medical Informatics and Fuzzy Technology. 107-111 (1999)
Shakeel Ismail、Makio Hoshiura、Masahiro Nagamatu 和 Torao Yanaru:“用于布线问题的神经计算”医学信息学和模糊技术国际研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masahiro Nagamatu, Hirohisa Aman, Kazunori Miyamoto and Torao Yanaru: "Using Approximate Solution for Solving SAT by Lagrange Programming Neural Network"Proceedings of the 6the International Conference on Soft Computing. 652-659 (2000)
Masahiro Nagamatu、Hirohisa Aman、Kazunori Miyamoto 和 Torao Yanaru:“利用拉格朗日编程神经网络求解 SAT 的近似解”第六届软计算国际会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAGAMATU Masahiro其他文献
NAGAMATU Masahiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAGAMATU Masahiro', 18)}}的其他基金
Solving Constraint Satisfaction Problew by Using Dynamics Which Can Search State-Space Globally
利用全局搜索状态空间的动力学解决约束满足问题
- 批准号:
14580383 - 财政年份:2002
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)