Mathematical Modeling and Stochastic Sensitivity Analysis for Data Mining

数据挖掘的数学建模和随机敏感性分析

基本信息

  • 批准号:
    11680435
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

We have studied the mathematical modeling and stochastic sensitivity analysis techniques that are required to develop advanced machine-learning systems for data mining, and obtained the following results :1. A new stochastic learning algorithm for neural networks : Based on a functional derivative formulation of the gradient descent method in conjunction with stochastic sensitivity analysis techniques using variational approach, a novel stochastic learning algorithm using Gaussian white noise is developed for a class of discrete-time neural networks. Unlike the back-propagation algorithm, the proposed method does not require the synchronous transmission of information backward along connection weights. The proposed algorithm uses only ubiquitous noise inherent in the network and local signals, to achieve simple sequential updating of connection weights.2. Bootstrap re-sampling for unbalanced data in supervised leaning : A technical framework using bootstrap techniques is developed to assess the impact of re-sampling on the generalization ability of a supervised learning. Based on the bootstrap expression of the prediction error, the proposed method enables identification of the optimal re-sampling proportion for unbalanced data set. The analysis is also conducted to extend the proposed method to cross-validation.3. Applications to manufacturing scheduling and processes : Data mining techniques to assess the association or closeness of dispatching rules are studied in order to develop optimal manufacturing schedules. Minimum Description Length (MDL) criterion is also studied to discover unnatural patterns or events in manufacturing processes. The results we obtained clearly indicate that techniques of data mining will play an essential role in the production scheduling and statistical process control.
我们研究了开发先进的机器学习数据挖掘系统所需的数学建模和随机灵敏度分析技术,并取得了以下成果:1。一种新的神经网络随机学习算法:基于梯度下降法的泛函导数形式,结合变分法的随机灵敏度分析技术,提出了一类离散时间神经网络在高斯白色噪声下的随机学习算法。与反向传播算法不同,该方法不需要信息沿沿着连接权值反向同步传输。该算法仅利用网络中普遍存在的噪声和本地信号,实现简单的连接权值顺序更新.监督学习中不平衡数据的Bootstrap重采样:开发了一个使用Bootstrap技术的技术框架,以评估重采样对监督学习泛化能力的影响。基于预测误差的自举表达式,该方法能够识别不平衡数据集的最佳重采样比例。通过分析,将所提出的方法扩展到交叉验证。应用于制造调度和流程:数据挖掘技术,以评估关联或紧密的调度规则进行了研究,以制定最佳的制造进度。最小描述长度(MDL)标准也研究发现不自然的模式或事件在制造过程中。我们得到的结果清楚地表明,数据挖掘技术将在生产调度和统计过程控制中发挥至关重要的作用。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Suzuki: "Recognition of Unnatural Patterns in Manufacturing Processes Using the Minimum Description Length Criterion"Communications in Statistics : Simulation and Computation. 29・2. 583-600 (2000)
H.Suzuki:“使用最小描述长度标准识别制造过程中的非自然模式”统计通讯:模拟和计算29・2(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
G.Dupret and M.Koda: "Bootstrap Training for Neural Network Learning"RIMS Kokyuroku 1127, Kyoto University. 27-35 (2000)
G.Dupret 和 M.Koda:“神经网络学习的引导训练”RIMS Kokyuroku 1127,京都大学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Georges Dupret and Masato Koda: "Bootstrap Training for Neural Network Learning"京都大学数理解析研究所 講究録1127. (印刷中). (2000)
Georges Dupret 和 Masato Koda:“神经网络学习的引导训练”京都大学数学科学研究所 Kokyuroku 1127。(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Georges Dupret and Masato Koda: "Bootstrapping for Neural Network Learning"Proc.Asia Pacific Operations Research Society Conference 2000. (印刷中). (2000)
Georges Dupret 和 Masato Koda:“神经网络学习的引导”Proc.亚太运筹学会会议 2000。(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Koda and H.Okano: "A New Stochastic Learning Algorithm for Neural Networks"Journal of the Operations Research Society of Japan. Vol.43, No.4. 469-485 (2000)
M.Koda 和 H.Okano:“神经网络的新随机学习算法”日本运筹学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KODA Masato其他文献

KODA Masato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KODA Masato', 18)}}的其他基金

Development and Evaluation of Mathematical Models for Service-Oriented Data Mining
面向服务的数据挖掘数学模型的开发和评估
  • 批准号:
    21510139
  • 财政年份:
    2009
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Evaluation of Mathematical Models for Ubiquitous Data Mining
普适数据挖掘数学模型的开发和评估
  • 批准号:
    18510117
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integration of Data Mining Models and Prototyping of CRM Business Model
数据挖掘模型的集成和 CRM 业务模型的原型设计
  • 批准号:
    15510116
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis and Optimization of Data Mining Models to Achieve Higher Performance
数据挖掘模型的综合和优化以实现更高的性能
  • 批准号:
    13680504
  • 财政年份:
    2001
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
  • 批准号:
    2332060
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Continuing Grant
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
  • 批准号:
    23K11120
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
  • 批准号:
    23K10454
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
  • 批准号:
    23H03451
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了