Investigation of prehomogeneous vector spaces and ideal class groups of algebraic number fields

预齐次向量空间和代数数域理想类群的研究

基本信息

  • 批准号:
    12640018
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

Let V be the vector space of symmetric matrices of degree three. Then the group G = SL(3) x GL(2) acts on V and (G,V) is a prehomogeneous vector space. Let L be the lattice of V consisting of all pairs of matrices with integral coefficients. For any pair x = (x_1,x_2) ∈ L, we define a binary cubic form Φ_x(u,v) by Φ_x(u,v) = det(ux_1 + vs_2). This is an integral binary cubic form. Put Γ = SL(3,Ζ) and consider Γ as a subgroup of G. Then the action of γ∈Γ on x = (x_1,x_2) is given by γx = (γx_1^tx_1γ, γx_2^tx_1γ). It is obvious that Φ_<γx> = Φ_x. So we can consider the following problem: For a given binary form Φ, how many Γ-equivalence classes of pairs x ∈ L with Φ_x = Φ are there? J. Morales generalized this problem and obtained some results under certain assumptions. In this project, we have studied pairs x without his assumptions. We proved that for an integral binary form Φ of degree n, the order associated with Φ is weakly self dual in the meaning of Frohlich if and only if Φ is primitive. Applying this result, we studied the relations between the set of Γ-equivalence classes of pairs in L and the 2-torsion subgroups of ideal class groups of algebraic number fields of degree n. In particular, we obtained some results in the case of n = 2 and n = 3 when Φ is not primitive. These results are to be published in Acta Arithemetica. I also gave a talk on the results at Journees Arithmetiques 2001.
设V是三次对称矩阵的向量空间。则群G = SL(3) x GL(2)作用于V,且(G,V)是一个预齐次向量空间。设L是V的晶格,它由所有带积分系数的矩阵对组成。对于任意一对x = (x_1,x_2)∈L,我们用Φ_x(u,v) = det(ux_1 + vs_2)定义了一个二元三次形式Φ_x(u,v)。这是一个二元三次积分形式。设Γ = SL(3,Ζ),将Γ视为g的子群,则Γ∈Γ对x = (x_1,x_2)的作用由Γ x = (Γ x_1^tx_1γ, Γ x_2^tx_1γ)给出。可见Φ_<γx> = Φ_x。因此我们可以考虑以下问题:对于给定的二进制形式Φ,有多少对x∈L (Φ_x = Φ)的Γ-equivalence类?J. Morales推广了这个问题,并在一定的假设下得到了一些结果。在这个项目中,我们研究了没有他的假设的配对x。证明了对于n次的积分二元形式Φ,与Φ相关的阶在Frohlich意义上是弱自对偶的当且仅当Φ是本原的。应用这一结果,我们研究了L中Γ-equivalence类对的集合与n次代数数域的理想类群的2-扭转子群之间的关系,特别是在n = 2和n = 3的情况下,当Φ不是本元时,我们得到了一些结果。这些结果将发表在《算术学报》上。我还在2001年的Journees Arithmetiques上做了一个关于结果的演讲。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J. Nakagawa: "Class numbers of pairs of symmetric matrices"Acta Arithemetica. (to appear).
J. Nakakawa:“对称矩阵对的类数”《算术学报》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jin Nakagawa: "Class numbers of symmetric mastrices"Acta Arithemetica.
Jin Nakakawa:“对称母数的类数”《算术学报》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jin Nakagawa: "Class numbers of pairs of symmetric matrices"Acta Arithemetica.
Jin Nakakawa:“对称矩阵对的类数”算术学报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAGAWA Jin其他文献

NAKAGAWA Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAGAWA Jin', 18)}}的其他基金

A study on prehomogeneous vector spaces and extensions of algebraic number fields
预齐次向量空间与代数数域的延拓研究
  • 批准号:
    16540015
  • 财政年份:
    2004
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of zeta functions associated with prehomogeneous vector spaces
与预齐次向量空间相关的 zeta 函数的研究
  • 批准号:
    10640014
  • 财政年份:
    1998
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Mathematical Sciences: Structure of the Ideal Class Group
数学科学:理想班级群的结构
  • 批准号:
    9210662
  • 财政年份:
    1992
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了