p-adic analysis of algebraic numer fields and algorithm on algebraic number fields or finite fields

代数数域的 p-adic 分析以及代数数域或有限域上的算法

基本信息

  • 批准号:
    12640029
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

A. Kudo studied algorithms for computing p-adic properties of Bernoulli numbers, for prime factor ization of integers and for calculation of Carmichael numbers. He proved that the p-adic Euler constant γ_p of p-adic zeta function is equivalent to -(B_<p-1>/(p-1) - 1/p) for modulo p (p【greater than or equal】5), where B_n denotes the n-th Bernoulli number, and calculated the value (modp) of them for p【less than or equal】20,000,000. It is derived that in this range γ_p*0 (modp) for p≠5, 13, 563. Also he calculated all Carmichael numbers less than 10^<17> with their prime factorizations.T. Washio studied class number and Hasse invariants of elliptic curves over finite fields. By means of determination of the number of rational points, he derived a sufficient condition for an elliptic curve over a finite prime field GF(p) to be supersingular, and gave a new equality of binomial coefficients.Y. Sueyoshi studied 4-class ranks of quadratic number fields and matrices over finite field GF(2). Using Redei matrices, he proved new inequality relations between the narrow 4-class ranks of quadratic number fields. He further gave a characterization of Redei matrices with minimal rank. As an application of these results, he also proved the fact that if the ideal class group of imaginary quadratic number field K contains a subgroup of type (4,4, 2,2) and 4 is not contained in the prime discriminant of K, then the 2-class field tower of K is infinite.Y. Maruyama studied discrete optimization problems using the theory of finite automata. He intro duced the notion of a new sequential decision process called bitone sequential decision process and gave a strong representation theorem for a discrete decision process.
A.工藤研究算法计算p-adic性能的伯努利数,素因子化的整数和计算的卡迈克尔号码。他证明了p-adic zeta函数的p-adic欧拉常数γ_p<p-1>对于模p(p[大于或等于]5)等价于-(B_ /(p-1)- 1/p),其中B_n表示第n个伯努利数,并计算了当p[小于或等于] 20,000,000时它们的值(modp)。在此范围内,当p ≤ 5,13,563时,γ_p*0(modp)为零。他还计算了所有小于10^的卡迈克尔数<17>及其素因子分解。鹫尾研究了有限域上椭圆曲线的类数和Hasse不变量。通过确定有理点的个数,他得到了有限素域GF(p)上的椭圆曲线是超奇异的一个充分条件,并给出了一个新的二项式系数等式。Sueyoshi研究了有限域GF(2)上二次数域和矩阵的4类秩。使用Redei矩阵,他证明了新的不等式关系之间的狭窄4类秩的二次数域。他进一步给出了一个表征Redei矩阵的最小秩。作为这些结果的应用,他还证明了:如果虚二次数域K的理想类群包含一个(4,4,2,2)型子群,且4不包含在K的素判别式中,则K的2-类域塔是无穷的. Maruyama研究离散优化问题使用有限自动机理论。他引入了一种新的序贯决策过程的概念,称为双序贯决策过程,并给出了离散决策过程的强表示定理。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aichi Kudo: "A congruence of generalized Bernoulli number for the character of the first kind"Adv. Stud. Contemp. Math.. 2. 1-8 (2000)
Aichi Kudo:“第一类特征的广义伯努利数的同余”Adv.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yutaka Sueyoshi: "On Redei matrics with minimal rank"Far East J. Math. Sci. 3. 121-128 (2001)
Yutaka Sueyoshi:“论具有最小秩的 Redei 矩阵”Far East J. Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yutaka Sueyoshi: "Infinite 2-class field towers of some imaginary quardratic number fields"(Preprint). 1-3
Yutaka Sueyoshi:“一些虚数二次数域的无限 2 级场塔”(预印本)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Aichi Kudo: "A computation of Carmichael numbers"平成12-13年度科学研究費補助金研究成果報告書所収予定. (2002)
工藤爱知:“卡迈克尔数的计算” 计划纳入 2000-2000 年科学研究补助金研究结果报告(2002 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tadashi Washio, Tetsuo Kodama: "On a certain supersingular elliptic curve"Bulletin of Faculty of Education, Nagasaki University, Natural Science. 66. 1-3 (2002)
鹫尾正、儿玉哲夫:《论某超奇异椭圆曲线》长崎大学教育学部通报,自然科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUDO Aichi其他文献

KUDO Aichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUDO Aichi', 18)}}的其他基金

p-adic method in discrete mathematics and its application
离散数学中的p-adic方法及其应用
  • 批准号:
    10640032
  • 财政年份:
    1998
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了