On pencil genus of 2-dimensional singularities
关于二维奇点的铅笔亏格
基本信息
- 批准号:12640060
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On any singularity (X,o) of a complex analytic space, we consider a good resolution space. Then we prove that it is embedded into a total space a pencil of algebraic curves. Let consider the minimal value of the genus of such pencil. We call the value "pencil genus of (X,o)" and write it p_e(X,o). Also, let f be an element of the maximal ideal of (X,o) which satisfies some properties. Let Φ : S → Δ be a pencil of algebraic curves and π : (Y,E)→(X,o) a good resolution such that S contains Y and satisfies the composition of f and π is equal to the restriction of Φ to Y. For such pair (X,o) and f, we consider such pencils and resolutions. Let consider the minimal value of the genus of such pencil. We call the value "pencil genus of a pair of (X,o) and f" and write it p_e(X,o,f). In this paper we researched the fundamental properties of p_e(X,o) and p_e(X,o,f). Our most important results are as follows :Theorem 1. Let (X,o) be a normal surface singularity and let h an element of the maximal ideal of (X,o). Let π : (Y,E)→(X,o) be a good resolution such that (h o π) is a simple normal crossing divisor on Y. Then there exists a pencil of curves Φ : S → Δ of genus p_e(X,o,h) which satisfies the above property and all connected components of supp(S_o)\ E are minimal P^1-chains started from E.Theorem 2. Let (X,o) be a normal surface singularity. Suppose p_f(X,o)≧ 2. Then (X,o) is a Kodaira singularity if and only if the w.d.graph for the minimal good resolution of (X,o) is a Kodaira graph and p_e(X,o)=p_f(X,o)Theorem 3. (X,o) is a Kulikov singularity if and only if there is a reduced element h in the maximal ideal of (X,o) with p_e (X,o,h) =p_f(X,o).
在复解析空间的任何奇点(X,o)上,我们考虑一个好的分解空间.然后证明它是嵌入到一个总空间的一束代数曲线。让我们考虑这种铅笔的亏格的最小值。我们称这个值为“(X,o)的铅笔亏格”并将其记为p_e(X,o)。另外,设f是(X,o)的极大理想中满足某些性质的元素.令Φ:S → Δ是一束代数曲线,π:(Y,E)→(X,o)是一个好的分解,使得S包含Y,满足f的复合,π等于Φ对Y的限制.对于这样的对(X,o)和f,我们考虑这样的铅笔和决议。让我们考虑这种铅笔的亏格的最小值。我们称该值为“一对(X,o)和f的铅笔亏格”,并将其写为p_e(X,o,f)。本文研究了p_e(X,o)和p_e(X,o,f)的基本性质。我们最重要的结果如下:定理1。设(X,o)是法曲面奇点,h是(X,o)的极大理想的元素.设π:(Y,E)→(X,o)是一个好的分解,使得(ho π)是Y上的一个简单的正规交叉因子.则存在亏格p_e(X,o,h)的曲线束Φ:S → Δ满足上述性质,且supp(S_o)\ E的所有连通分支都是从E出发的极小P^1-链。设(X,o)为法向曲面奇点。设p_f(X,o)<$2.则(X,o)是科代拉奇点当且仅当(X,o)的最小好分解的w.d.图是科代拉图且p_e(X,o)=p_f(X,o)定理3.(X,o)是库利科夫奇性当且仅当(X,o)的极大理想中存在约化元h,其中p_e(X,o,h)=p_f(X,o).
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
都丸 正: "On Kodaira singularities defined by z^n=f(x,y)"Math. Z.. 236(1). 133-149 (2001)
Tadashi Tomaru:“关于 z^n=f(x,y) 定义的 Kodaira 奇点”Z.. 236(1) (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Tomaru: "Pinkham-Demazure construction for 2-dimensional cyclic quotient singularities"Tsukuba J. Math. 25. 75-84 (2001)
T. Tomaru:“二维循环商奇点的 Pinkham-Demazure 构造”Tsukuba J. Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Okuma: "A numerical condition for a deformation of a Gorenstein surface singularity to admit a simultaneous log-canonical model"Proc. A.M.S.. 129. 2823-2831 (2001)
T. Okuma:“Gorenstein 表面奇点变形的数值条件,以允许同时对数正则模型”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Okuma: "Simultaneous good resolutions of deformation of Gorenstein surface singularities"Internat. J. Math.. 12. 49-61 (2001)
T. Okuma:“Gorenstein 表面奇点变形的同时良好分辨率”Internat。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
都丸正: "Pinkham-Demazure construction for two-dimensional cyclic quotient singularities."Tsukuba Journal of Mothematics. (発表予定).
Tadashi Tomaru:“二维循环商奇点的 Pinkham-Demazure 构造。”筑波数学杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TOMARU Tadashi其他文献
TOMARU Tadashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TOMARU Tadashi', 18)}}的其他基金
On some relations between complex surface singularities of some types and degeneration families of compact Riemann surfaces.
关于某些类型的复杂曲面奇点与紧致黎曼曲面简并族之间的某些关系。
- 批准号:
20540062 - 财政年份:2008
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The research of 2-dimensional complex singularities associated to degenerations of closed Riemann surfaces
闭黎曼曲面退化相关的二维复奇点研究
- 批准号:
16540052 - 财政年份:2004
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On Pencil genus for normal surface singularities (II)
论法向表面奇点的铅笔亏格(II)
- 批准号:
14540061 - 财政年份:2002
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of Quasi-Kodaira singularities
准小平奇点的研究
- 批准号:
10640062 - 财政年份:1998
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




