C03 Predictive mechanical tumor markers: solid stress and multiscale viscoelastic data analysis
C03 预测性机械肿瘤标志物:固体应力和多尺度粘弹性数据分析
基本信息
- 批准号:530849390
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity and tissue fluidity are conducive to cell unjamming and metastatic spread. The overall aim of this subproject is to identify predictive fingerprints of mechanical parameter changes that are sensitive to tumor formation and specific to aggressive proliferation and unjamming transitions in tumors. To this end, C03 will first develop the tools to quantify solid stress in vivo, which will ultimately be combined with tissue fluidity (C02) and mechanical heterogeneity (C01) for mechanical profiling of tumors. Solid stress generated by growing tumors forms a biophysical environment in favor of tumor progression that must be analyzed in vivo, as it is not present after resection. Therefore, C03 aims to derive solid stress from in-vivo deformation fields obtained from large stain analysis of high-resolution 3D MRI using trained neuronal networks in combination with in-vivo stiffness maps acquired by tomoelastography. The novel marker of solid stress will support the reconciliation of multiplexed mechanical data, as solid stress is known to alter the apparent stiffness in tumors due to compression stiffening. To address mechanical parameter reconciliation, C03 will compile a library of data from all subprojects that include mechanical parameters from cells, organoids, tissues as well as in-vivo patients. Guided learning approaches that account for solid stress, tissue fluidity and mechanical heterogeneity across length scales will be used to specify best-fitting viscoelastic models and parameter ranges compatible with all mechanical data obtained in this research unit. Modality- and frequency independent mechanical parameters will be combined with clinical, histological and multi-omics data using unsupervised learning in order to identify clusters of high sensitivity, specificity and predictivity with respect to tumor biology of ex vivo and in vivo systems. Overall, our work plan builds on the main hypothesis that the mechanical hallmarks of cancer acquired by a tumor and noninvasively quantified with MRE determine tumor aggressiveness, malignant potential and treatment response. To verify this hypothesis, C03 will focus on (i) solid stress quantification in combination with other cancer-specific mechanical markers such as fluidity and heterogeneity provided by the other subprojects, (ii) learned modality-overarching and tissue-intrinsic constitutive parameters, and (iii) automated assessment of the diagnostic value of multifrequency MRE and quantitative MRI. Collectively, C03 aims to translate the data generated in all A-B-C projects into a roadmap of mechanical profiles which fully reflect the aggressive potential of a tumor and its responsiveness to treatment.
癌症的力学特征包括异常高的固体应力以及固有力学组织特性的剧烈和空间异质性变化。而固体应力引起的机械感觉信号促进肿瘤进展,机械异质性和组织流动性有利于细胞的畅通和转移扩散。这个子项目的总体目标是识别机械参数变化的预测指纹,这些指纹对肿瘤的形成敏感,对肿瘤中的侵袭性增殖和不干扰转变具有特异性。为此,C03将首先开发在体内量化固体应力的工具,最终将与组织流动性(C02)和机械异质性(C01)相结合,用于肿瘤的机械侧写。肿瘤生长产生的固体应力形成了有利于肿瘤进展的生物物理环境,必须在体内进行分析,因为切除后不存在。因此,C03的目标是从高分辨率3D MRI的大应变分析中获得的体内变形场中获得固体应力,该分析使用训练的神经元网络结合通过断层弹性成像获得的体内刚性图。固体应力的新标记物将支持多路力学数据的协调,因为固体应力已知会改变由于压缩僵硬而导致的肿瘤的表观硬度。为了解决机械参数协调问题,C03将汇编来自所有子项目的数据库,其中包括来自细胞、器官、组织以及体内患者的机械参数。将使用考虑固体应力、组织流动性和长度尺度上的力学异质性的指导学习方法来指定与本研究单位获得的所有力学数据相兼容的最佳拟合粘弹性模型和参数范围。与形态和频率无关的机械参数将使用无监督学习与临床、组织学和多组学数据相结合,以识别与体外和体内系统的肿瘤生物学相关的高敏感性、特异性和预测性的簇。总体而言,我们的工作计划建立在主要假设的基础上,即肿瘤获得的癌症的机械特征并通过MRE非侵入性量化决定了肿瘤的侵袭性、恶性潜力和治疗反应。为了验证这一假设,C03将侧重于(I)结合其他子项目提供的其他癌症特异性机械标记物(如流动性和异质性)的固体应力量化,(Ii)学习的总体形态和组织固有的本征参数,以及(Iii)多频率MRE和定量MRI诊断价值的自动评估。总的来说,C03的目标是将所有A-B-C项目中产生的数据转换为充分反映肿瘤侵袭性潜力及其治疗反应性的机械配置路线图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Jing Guo, Ph.D.其他文献
Dr. Jing Guo, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Jing Guo, Ph.D.', 18)}}的其他基金
Structure-sensitive quantitative MR imaging of renal mechanical properties: Combined anisotropic MR elastography and diffusion tensor imaging for the assessment of renal function
肾脏机械特性的结构敏感定量 MR 成像:结合各向异性 MR 弹性成像和扩散张量成像来评估肾功能
- 批准号:
317329106 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Role of tissue mechanical and metabolic properties in cancer formation studied in a translational liver tumor model
在转化性肝肿瘤模型中研究组织机械和代谢特性在癌症形成中的作用
- 批准号:
530848169 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
B03 Scaffold composition and fluid pressure in recellularized hepatic and pancreatic tumors
B03 再细胞化肝和胰腺肿瘤中的支架组成和流体压力
- 批准号:
530848218 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Rheological Magnetic Resonance Elastography for the Quantification of Cancer Biomechanical Properties towards Better Diagnoses and Therapies
流变磁共振弹性成像用于量化癌症生物力学特性,以实现更好的诊断和治疗
- 批准号:
504873209 - 财政年份:
- 资助金额:
-- - 项目类别:
Heisenberg Grants
相似海外基金
LFPKMPPM - Lubrication Failure Prediction of Key Mechanical Parts for Predictive Maintenance
LFPKMPPM - 关键机械部件润滑故障预测,用于预测性维护
- 批准号:
EP/Y028198/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Looking into the Crystal Ball: Uncovering Predictive Mechanical Cues for Cell Choices in Development and Disease'
探究水晶球:揭示发育和疾病中细胞选择的预测机械线索
- 批准号:
2898814 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Development of a predictive model and electronic health record-based probability scoring system and dashboard for postoperative respiratory failure
开发术后呼吸衰竭的预测模型和基于电子健康记录的概率评分系统和仪表板
- 批准号:
10643357 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Predictive Approaches and Technology Development for Identification of Susceptibility to Multiple Independent Infections in Trauma Patients
识别创伤患者多重独立感染易感性的预测方法和技术开发
- 批准号:
10455798 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10580156 - 财政年份:2020
- 资助金额:
-- - 项目类别:
DMREF: Predictive Multiscale Modeling of the Mechanical Properties of Polymers 3D Printed Using Fused Filament Fabrication
DMREF:使用熔丝制造 3D 打印聚合物机械性能的预测多尺度建模
- 批准号:
1628974 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: Quantum Mechanical Predictive Tools for Identification and Redesign of Skin Sensitizing Chemicals
SBIR 第一阶段:用于识别和重新设计皮肤致敏化学品的量子力学预测工具
- 批准号:
1248802 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Developments of predictive models for mass transport and mechanical properties considering subsurface temperature
考虑地下温度的质量传递和机械性能预测模型的开发
- 批准号:
24760375 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
PREDICTIVE GENES, MECHANISMS, AND CLINICAL BIOMARKERS OF SUDEP
SUDEP 的预测基因、机制和临床生物标志物
- 批准号:
8338442 - 财政年份:2011
- 资助金额:
-- - 项目类别:
PREDICTIVE GENES, MECHANISMS, AND CLINICAL BIOMARKERS OF SUDEP
SUDEP 的预测基因、机制和临床生物标志物
- 批准号:
8234288 - 财政年份:2011
- 资助金额:
-- - 项目类别: