Analysis and Geometry of the Teichmuller Spaces
Teichmuller空间的分析和几何
基本信息
- 批准号:13640164
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research during this term consists mainly of the following three branches :1. Characterization of simple dividing loops on Riemann surfaces analytically.2. Representation of the Teichmuller spaces global real analytically by angle parameters.3. Representation of the Teichmuller modular groups (the mapping class groups) by angle parameters.I Characterized the geometry of Mobius transformations by using the one-half powers of these transformations and these traces. Furthermore, I gave the necessary and sufficient condition of a simple loop L on a Riemann surface S to be dividing, by using the lifts of a Fuchsian group G representing S to the special linear group SL (2,C). For example, if S is a compact Riemann surface of genus p (>1), then the following is obtained :The number of the lifts of G is 2 to the 2p-th power. Let g be an element of G corresponding to L. Then L is to be dividing if and only if for any lift of G, the matrix corresponding to g always has the negative trace.I in … More troduced new angle parameters corresponding to the intersection angles between geodesics on the marked Riemann surface, in order to obtain global real analytic and simple representations of the Teichmuller spaces. I showed that the Teichmuller spaces are described by only angle parameters and it is easy to analyze such angle parameter spaces of the typical Teichmuller spaces of types (1,1), (2,0) and (3,0). Angle parameters correspond to the intersection angles between the axes of the generators and these products of the marked Fuchsian group. I found out the high symmetry of the arrangement of these axes. I investigated the relation among such geometry of Mobius transformations, traces and angle parameters. From these observations, the much relation and information of angle parameters were obtained.Next, I considered the representations of the Teichmuller modular groups by only angle parameters. I especially studied the following :I. Interpretation of the Teichmuller modular groups as the actions of some special hyperbolic polygons bounded by the axes to others.II. Relation between angle parameters and length parameters representing these groups. Less
本学期的研究主要包括以下三个方面:1.黎曼曲面上简单分割环的解析刻画。用角度参数解析地表示TeichMuller空间的整体实数。用角度参数表示Teichmuller模群(映射类群)。我用这些变换的一半幂和这些迹来刻画Mobius变换的几何。此外,利用表示L的富氏群G到特殊线性群SL(2,C)的升力,给出了黎曼曲面上的单圈S可除的充要条件。例如,如果S是亏格p(>;1)的紧黎曼曲面,则得到如下结果:G的升程数是2的2次P次方。设g是G中对应于L的元素,则L除当且仅当对G的任何提升,对应于g的矩阵总是有负迹。i在…中进一步引入了与标号黎曼曲面上测地线的交角对应的新的角度参数,从而得到了TeichMuller空间的整体实解析式和简明表示。证明了TeichMuller空间仅用角度参数来刻画,对于典型的(1,1),(2,0)和(3,0)型TeichMuller空间的这种角度参数空间的分析是很容易的。角度参数对应于发电机的轴线与标记的富氏群的这些乘积之间的交角。我发现这些轴的排列具有高度的对称性。我研究了这样的Mobius变换几何、迹和角度参数之间的关系。通过这些观察,得到了角参数之间的许多关系和信息。其次,考虑了仅用角参数来表示Teichmuller模群的情况。重点研究了以下内容:1.将Teichmuller模群解释为某些特殊的以轴为界的双曲多边形间的相互作用;2.表示这些群的角度参数和长度参数之间的关系。较少
项目成果
期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hironori Kumura: "On the intrinsic ultracontractivity for compact manifolds with boundary"Kyushu J. Math.. 57. 29-50 (2003)
Hironori Kumura:“论有边界的紧致流形的固有超收缩性”九州数学杂志 57. 29-50 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Sato: "Jorgensen's inequality for classic Schottky groups of real type, II"J. Math. Soc. Japan. 53. 791-811 (2001)
Hiroki Sato:“乔根森对实型经典肖特基群的不等式,II”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Sato: "Jorgensen groups and the Picard group"Proc. The Third ISAAC International Congress. to appear. (2003)
佐藤弘树:“乔根森群和皮卡德群”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihide Okumura: "Lifting problem and its application to Riemann surfaces"Eighth International Conference on Complex Analysis. 173-179 (2001)
Yoshihide Okumura:“提升问题及其在黎曼曲面上的应用”第八届国际复分析会议。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Sato: "The Picard group, the figure-eight knot group and Jorgensen groups"RIMS kokyuroku, Kyoto Univ.. 1223. 37-42 (2001)
Hiroki Sato:“Picard 群、8 字结群和 Jorgensen 群”RIMS kokyuroku,京都大学.. 1223. 37-42 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKUMURA Yoshihide其他文献
OKUMURA Yoshihide的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKUMURA Yoshihide', 18)}}的其他基金
TEICHMULLER SPACES AND GEOMETRY OF MOBIUS TRANSFORMATIONS
TEICHMULLER 空间和莫比乌斯变换的几何
- 批准号:
11640162 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A representation of the Teichmuller modular group as a group of rational transfomations and its applications to dynamical systems and Kleinian groups
Teichmuller 模群作为一组有理变换的表示及其在动力系统和 Kleinian 群中的应用
- 批准号:
21K03271 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on dynamical system of the Teichmuller modular group represented by a group of rational transformations
以有理变换群为代表的Teichmuller模群动力系统研究
- 批准号:
18K03331 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Transitivity Property of the Teichmuller Modular Group
Teichmuller模群的传递性
- 批准号:
7802118 - 财政年份:1978
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant