Analytic deformation of Poisson manifolds and noncominutative geometry
泊松流形的解析变形和非计算几何
基本信息
- 批准号:13640208
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the project is to give a constructive proof of existence of analytic deformation of Poisson manifolds, that generalize symplectic manifolds. The existence of deformation quantization(algebraic deformation) for Poisson manifolds, which has long been an important problem, was finally shown by M.Kontsevich in 1997. The relationship between algebraic deformation and analytic deformation is similar to the relationship between a formal power series and a smooth function that realizes the given formal power series.Symplectic manifolds are special examples of Poisson manifolds, and its structures are well known. In a joint project with R. Nest of the University of Copenhagen and I.Peter of Munster University, we investigated symplectic manifolds and showed that any closed symplectic manifold has an analytic deformation provided that the second homotopy group is trivial. This result is published as "Strict quantization of symplectic manifolds (to appear in Letters hi Mathematical Physics)".The second homotopy group of the 2-sphere is nontrivial. Thus the result above cannot be applied to the 2-sphere. In a joint project with C.L.Olsen of the State University of New York at Buffalo, we studied the 2-sphere. The 2-sphere possesses interesting Poisson structures besides the standard rotation invariant symplectic structure. We constructed an analytic deformation for a Poisson structure degenerate at the North and South poles. This result is published as "A new family of noncommutative 2-sphers".
该项目的目的是提供泊松流形解析变形存在的建设性证明,从而推广辛流形。泊松流形的变形量化(代数变形)的存在一直是一个重要的问题,最终由M.Kontsevich于1997年证明。代数变形和解析变形之间的关系类似于形式幂级数和实现给定形式幂级数的光滑函数之间的关系。辛流形是泊松流形的特殊例子,其结构是众所周知的。在与哥本哈根大学的 R. Nest 和蒙斯特大学的 I.Peter 的联合项目中,我们研究了辛流形,并表明只要第二同伦群是平凡的,任何闭辛流形都具有解析变形。该结果发表为“辛流形的严格量子化(出现在数学物理快报中)”。2-球体的第二个同伦群是非平凡的。因此上面的结果不能应用于2-球体。在与纽约州立大学布法罗分校的 C.L.Olsen 的联合项目中,我们研究了 2 球体。除了标准旋转不变辛结构之外,2-球体还具有有趣的泊松结构。我们构建了在北极和南极退化的泊松结构的解析变形。该结果作为“非交换 2-球体的新族”发表。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Adachi and S.Maeda: "Characterization of space forms by circles in their geodesic spheres"Proceedings og Japan Academy, Series A, Mathematical Sciences. 78. 143-147 (2002)
T.Adachi 和 S.Maeda:“通过测地线球体中的圆来表征空间形式”,日本科学院院刊,A 系列,数学科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Adachi, S.Maeda, K.Suzuki: "Characterization of totally geodesic Kahler immersions"Hokkaido Mathematical Journal. 31(3). 629-641 (2002)
T.Adachi、S.Maeda、K.Suzuki:“完全测地线卡勒沉浸的表征”北海道数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Natsume, R.Nest: "Strict quantization of symplectic manifolds"Letters in Mathematical Physics. (掲載予定). (2003)
T.Natsume,R.Nest:“辛流形的严格量子化”数学物理学通讯(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Adachi, S.Maeda: "Characterization of space forms by circles in their geodesic spheres"Proceedings of Japan Academy, Ser. A Math. Sci.. 78(7). 143-147 (2002)
T.Adachi、S.Maeda:“通过测地线球体中的圆来表征空间形式”,日本学院学报,序列号。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nakanishi, Y.Ohyama: "Knots with given finite type invariants and Ck-distance"Journal of Knot Theory and Its Ramifications. 10・7. 1041-1046 (2001)
Y.Nakanishi,Y.Ohyama:“具有给定有限类型不变量和 Ck 距离的结”结理论及其分支杂志 10・7(2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NATSUME Toshikazu其他文献
NATSUME Toshikazu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NATSUME Toshikazu', 18)}}的其他基金
The Atiyah-Singer index theorem on hyperbolic spaces and noncommutative geometry
双曲空间和非交换几何的 Atiyah-Singer 指数定理
- 批准号:
17540192 - 财政年份:2005
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantization of Anosov foliations and noncommutative geometry
Anosov 叶状结构和非交换几何的量子化
- 批准号:
15540203 - 财政年份:2003
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantization of Poisson manifolds and noncommutative geometry
泊松流形的量化和非交换几何
- 批准号:
11640198 - 财政年份:1999
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




