Classification of hyperbolic discrete dynamics
双曲离散动力学的分类
基本信息
- 批准号:13640217
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let f : M → M be a regular C^1 map of a closed Riemannian manifold. We recall that f is an Anosov endomorphism if there are constants C > 0 and 0 < λ < 1 such that for any orbit (x_i) of f, i.e. f(x_i) = x_<i +I>, ∀_i ∈ Z, there is a splitting ∪_<i∈z>T_<x_i>M =E^s 【symmetry】 E^u = ∪_<i∈z>E^s_<x_i> 【symmetry】 E^u_<x_i>, which is left invariant by the derivative Df, such that for all n * 0 ‖Df^n(v)‖* Cλ^n‖v‖ if v ∈ E^s and ‖Df^n(v)‖ * C^<-1>λ^<-n> ||v|| if v ∈ E^u where || -‖ is the Riemannian metric. As is well-known, when (x_i) ≠ (y_i) and x_0 = y_0, we have E^u_<z_0> ≠ E^u_<y_0> in general. Hence, we will sometimes write E^u_<x_0> = E^u_<x_0>((x_i)). On the other hand, even if (x_i) ≠ (y_i), it follows that E^s_<x_0> = E^s_<y_0> whenever x_0=y_0, from which we have the stable bundle E^s = ∪_<x M>E^s_x, which is a continuous subbundle of the tangent bundle TM. We say that an Anosov endomorphism f : M →M is of codimension one if dim E^s = 1 or dimE^s = dim M - 1. We say that f is specia … More l if for orbits (x_i), (y_i) with x_0 = z_0, E^u_<x_0> = E^u_<y_0>. In this case we have the unstable bundle E^u = ∪_<z∈M> E^u_x^, which is also a continuous subbundle of TM. It is evident that if an Anosov e*morphism f : M → M is injective then f is special and it is an Anosov diffeomorphism, and that if E^s = 0, i.e. E^u = TM th** f is an expanding map, all of which form another class of special Anosov endomorphisms. In this study, the following theorems have been obtained ;Theorem 1. Let f : M → M be a codimension-one Anosov endomorphism of an arbitrary closed manifold. Suppose dimE^s = dim M - 1. Then f is homotopically conjugate and inverse-limit conjugate to a hyperbolic toral endomorphism of type dim E^s = dim M - 1. Futhermore, if f is special, then f is topologically conjugate to the hyperbolic toral endomorphism.Theorem 2. Let f : M → M be a codimension-one Anosov endomorphism of an arbitrary closed manifold. Suppose dim E^s = 1. Then f is homotopically conjugate and inverse-limit conjugate to a hyperbolic infra-nilmanifold endomorphism of type dim E^s = 1. Futhermore, if f is special, then f is topologically conjugate to the hyperbolic infra-nilmanifold endomorphism.Theorem 3. The following (1), (2) and (3) hold ; (1) Two codimension-one Anosov endomorphisms are homotopically conjugate if and only if they are π_1-conjugate. (2) Two codimension-one Anosov endomorphisms are inverse-limit conjugate if and only if they are π_1-conjugate up to finite index. (3) Two special codimension-one Anosov endomorphisms are topologically conjugate if and only if they are π_1-conjugate. Less
设f:M → M是闭黎曼流形上的正则C^1映射。我们记得f是Anosov自同态,如果存在常数C > 0和0 < λ < 1,使得对于f的任何轨道(x_i),即f(x_i)= x_<i +I>,λ_i ∈ Z,存在分裂λ_<i∈z>T_<x_i>M =E^s [对称性] E^u = λ_<i∈z>E^s_ [<x_i>对称性] E^u_<x_i>,它由导数Df保持不变,使得对于所有n * 0 λ_n <$Df^n(v)<$* Cλ^n <$v <$如果v ∈ E^s和λ_Df^n(v)<$* C^<-1>λ^<-n>||v||如果v ∈ E^u,其中||是黎曼度量。众所周知,当(x_i)≠(y_i)且x_0 = y_0时,我们一般有E^u_<z_0>≠ E^u_<y_0>。因此,我们有时会写E^u_<x_0>= E^u_<x_0>((x_i))。另一方面,即使(x_i)<$(y_i),只要x_0=y_0,则E^s_<x_0>= E^s_<y_0>,由此我们得到稳定丛E^s =<$_<x M>E^s_x,它是切丛TM的连续子丛。我们说Anosov自同态f:M →M是余维1的,如果dimE ^s = 1或dimE^s = dimM- 1。我们说f是特殊的 ...更多信息 l如果对轨道(x_i),(y_i),其中x_0 = z_0,E^u_<x_0>= E^u_<y_0>.在这种情况下,我们有不稳定丛E^u = E^u_x^,它也是TM的一个连续子丛。显然,如果Anosov e* 态射f:M → M是单射的,则f是特殊的,并且它是Anosov自同态,如果E^s = 0,即E^u = TM th** f是扩张映射,所有这些都形成另一类特殊的Anosov自同态。在这项研究中,已经获得了以下定理:定理1。设f:M → M是任意闭流形的余维一Anosov自同态.假设dimE^s = dimM- 1。则f与dim E^s = dim M - 1型双曲环面自同态同伦共轭且逆极限共轭。进一步地,如果f是特殊的,则f与双曲环面自同态拓扑共轭。设f:M → M是任意闭流形的余维一Anosov自同态.假设dim E^s = 1。则f与dim E^s = 1型双曲次零流形自同态同伦共轭且逆极限共轭。进一步地,如果f是特殊的,则f拓扑共轭于双曲次零流形自同态。定理3。(1)余维1的Anosov自同态是同伦共轭的当且仅当它们是π_1-共轭的。(2)两个余维1的Anosov自同态是逆极限共轭的当且仅当它们在有限阶上是π 1-共轭的。(3)两个特殊的余维一Anosov自同态是拓扑共轭的当且仅当它们是π_1-共轭的。少
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Koichi Hiraide 他: "(with N. Aoki) Topological discrete dynamical systems, in "Encyclopedia of General Topology""North-Holland. 23 (2003)
Koichi Hiraide 等人:“(与 N. Aoki)拓扑离散动力系统,载于“通用拓扑百科全书””North-Holland 23 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Koichi Hiraide, (with N.Aoki): "Topological discrete dynamical systems, Encyclopedia of General Topology"North-Holland (in press). (2003)
Koichi Hiraide,(与 N.Aoki):“拓扑离散动力系统,一般拓扑百科全书”北荷兰(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hirade, Koichi, 他: "(with N. Aoki) Topological discrete dynamical systems, in "Encyclopedia of General Topology""North-Holland. 23 (2003)
Hirade, Koichi 等人:“(与 N. Aoki)拓扑离散动力系统,载于“通用拓扑百科全书””North-Holland 23 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIRAIDE Koichi其他文献
HIRAIDE Koichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIRAIDE Koichi', 18)}}的其他基金
The study of special functions created by Borel-Laplace transform of Henon maps
Henon图Borel-Laplace变换特殊函数的研究
- 批准号:
24654040 - 财政年份:2012
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Topological theory of chaotic dynamics
混沌动力学拓扑理论
- 批准号:
09640116 - 财政年份:1997
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A study of various complexities of pseudo-Anosov maps and hyperbolic fibered 3-manifolds
伪阿诺索夫映射和双曲纤维3流形的各种复杂性的研究
- 批准号:
18K03299 - 财政年份:2018
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamics of pseudo-Anosov maps and topology of fibered 3-manifolds
伪 Anosov 映射的动力学和纤维 3 流形的拓扑
- 批准号:
15K04875 - 财政年份:2015
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Approximate Orbit Approach to the Construction of Pseudo-Anosov Maps (Mathematical Sciences)
构建伪阿诺索夫地图的近似轨道方法(数学科学)
- 批准号:
8202055 - 财政年份:1982
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant














{{item.name}}会员




