Formation Mechanism of Unique Voids in Cu Interconnects for ULSI

ULSI 铜互连中独特空洞的形成机制

基本信息

  • 批准号:
    13650759
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

Development to Cu interconnect is positively required in Si-ULSI(Ultra-Large-Scale Integrate) industries. The serious problem for the development is void formation, resulted in degradation of the performances and reliabilities in the Cu interconnects and Si devices. So far, mechanism of voiding in the Cu has been considered due to thermal stress and creep phenomena during annealing. The purpose in the present study is to investigate unique microvoid, which is completely different from the previous one, and to elucidate the mechanisms of the void formation in the Cu films.Recently, the Cu interconnects are fabricated using electroplating and sputtering depositions. In both depsitin methods, impurities or precipitates such as organic additives and Cu oxide(Cu0) are commonly introduced in the Cu films during growth. These impurities in the Cu films may have strong influence on the void formation. In fact, the formation of voids in the Cu/Cu0/Cu multilayers deposited by sputtering was observed after annealing in H_2/N_2 atmosphere. It is clear that this voiding is resulted from the formation of H_20 bubbles produced by chemical reaction between 0 in Cu0 and H_2 in the atmosphere. In case of the electroplated Cu films, a lot of voids were formed at the interface between the film and the substrate after annealing. There is much possibility that the organic additives trigger off the voiding in the electroplating depositions. As a consequence, it is quite essential to understand and control the amount of these impurities for prevention of the void formation.In the present study, we got precious knowledge of the voiding phenomena in the Cu films. The microvoids observed are unique from the point of view of the formation mechanism. Understandings of these unique voids will be strongly required fox the developments of high-performance and -reliable Cu interconnects.
超大规模集成电路(Si-ULSI)产业对铜互连的发展提出了迫切的要求。发展的一个严重问题是空洞的形成,导致铜互连线和硅器件的性能和可靠性下降。到目前为止,由于热应力和退火过程中的蠕变现象,铜中的空化机制被认为是可能的。本研究的目的是研究与以往的研究完全不同的独特的微孔洞,并阐明空洞在铜膜中形成的机制。在这两种方法中,有机添加剂和氧化铜(Cu0)等杂质或沉淀物通常在生长过程中被引入到铜膜中。铜膜中的这些杂质可能对空洞的形成有很大的影响。事实上,溅射沉积的Cu/Cu0/Cu多层膜在H_2/N_2气氛中热处理后就观察到了空洞的形成。显然,这种空化是由于CuO中的O与大气中的H_2发生化学反应而形成的H_20气泡。对于电镀铜薄膜,退火后在薄膜与衬底的界面处形成了大量的空洞。有机添加剂在电镀沉积中引发空化的可能性很大。因此,了解和控制这些杂质的含量对于防止空洞的形成是非常必要的。在本研究中,我们对铜膜的空化现象有了宝贵的认识。从形成机理的角度来看,观察到的微孔洞是独一无二的。随着高性能和高可靠性铜互连的发展,对这些独特的空洞的理解将是非常必要的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shinya KONISHI, Miki MORIYAMA and Masanori MURAKAMI: "Effect of Annealing Atmosphere on Void Formation in Copper Interconnects"Materials Transactions. 43-7. 1624-1628 (2002)
Shinya KONISHI、Miki MORIYAMA 和 Masanori MURAKAMI:“退火气氛对铜互连中空洞形成的影响”材料交易。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
守山実希, 村上正紀: "Si半導体デバイス用配線材料ナノ化での課題"化学工業. vol.53,11. 857-862 (2002)
Miki Moriyama、Masaki Murakami:“硅半导体器件布线材料的纳米化问题”化学工业第 53,11 卷(2002 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORIYAMA Miki其他文献

MORIYAMA Miki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CONECT: Novel All Copper Interconnect for Power Electronics Assembly
CONECT:用于电力电子组件的新型全铜互连
  • 批准号:
    87364
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了