Coalgebraic Reasoning for Quantitative System Analysis

定量系统分析的代数推理

基本信息

项目摘要

Modal logic serves as a formalism for the description of systems composed of nodes variously thought of as states, worlds, or individuals, and the interrelation between such nodes in a broad sense. It is widely applied in diverse contexts ranging from concurrency to knowledge representation. Quantitative modal logics deviate from the standard two-valued setup in that they take truth values in a domain that allows for degrees of truth in between complete truth and complete falsity. A typical example of such a domain of truth values is the real unit interval. Truth values in this domain may be read, for instance, as expressing vague qualifications, such as person being tall, in the vein of fuzzy logic. However, real-valuedness of truth arises also in other contexts, e.g. in probabilistic systems or in systems where states or transitions carry labels taken from a given metric space. More generally, truth domains that allow for measuring the deviation between truth values are usefully abstracted as so-called quantales. The object of CoRSA is to provide automated reasoning support for quantitative modal logics in this sense, aiming for genericity of reasoning algorithms over the system type (probabilistic, game-based, metric etc.) and over the semantics of the modalities, which in turn range from fuzzy relational modalities of the type `there is some successor / for all successors' over expectation-based probabilistic modalities of the type 'probably' to game-based modalities of the type a given coalition of agents can enforce some quantitative property'. To this end, we will work in the generic framework of universal coalgebra and, more specifically, coalgebraic logic, which provide categorical abstractions for the system type and the modalities. From work on reasoning in fuzzy description logics, it is known that the computational properties of quantitative modal logics depend rather strongly on which propositional connectives are included, up to the point that some reasoning problems become undecidable for certain propositional bases. Recent work on the connection between quantitative modal logics and notions of behavioral distance suggests that a point of balance between expressiveness and computational tractability may be found by focusing on non-expansive propositional operations, a point that we will clarify in the project. We thus expect to provide a generic framework for quantitative modal logics that stays close to semantic notions of behavioral distance and allows automated deduction in reasonable complexity.
模态逻辑作为一种形式主义,用于描述由各种被认为是状态、世界或个体的节点组成的系统,以及这些节点之间在广义上的相互关系。它广泛应用于从并发到知识表示的各种上下文中。定量模态逻辑偏离了标准的二值设置,因为它们在一个允许在完全真和完全假之间的真度的域中取真值。实单位区间是这种真值域的一个典型例子。例如,在模糊逻辑中,这个领域的真值可以被理解为表达模糊的资格,例如人很高。然而,真值的实值性也出现在其他情况下,例如在概率系统中,或者在状态或转移带有从给定度量空间中获取的标签的系统中。更一般地说,允许测量真值之间偏差的真域被有效地抽象为所谓的量子。CoRSA的目标是在这个意义上为定量模态逻辑提供自动推理支持,旨在实现推理算法在系统类型(概率、基于游戏、度量等)和模态语义上的通用性。它的范围从“有一些继承者/所有继承者”类型的模糊关系模式,超过基于期望的“可能”类型的概率模式,到基于博弈的“给定代理联盟可以强制执行某些定量属性”类型的模式。为此,我们将在通用协代数的通用框架下工作,更具体地说,是协代数逻辑,它为系统类型和模态提供了范畴抽象。从模糊描述逻辑的推理工作中,我们知道定量模态逻辑的计算性质很大程度上依赖于包含哪些命题连接词,以至于某些命题基的推理问题变得不可判定。最近关于定量模态逻辑和行为距离概念之间的联系的研究表明,可以通过关注非扩张性命题操作来找到表达性和计算可追溯性之间的平衡点,我们将在项目中澄清这一点。因此,我们期望为定量模态逻辑提供一个通用框架,该框架与行为距离的语义概念保持接近,并允许在合理的复杂性下自动演绎。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Lutz Schröder其他文献

Professor Dr. Lutz Schröder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Lutz Schröder', 18)}}的其他基金

Probabilistic Description Logic as a Fragment of Probabilistic First-Order Logic
概率描述逻辑作为概率一阶逻辑的片段
  • 批准号:
    187185332
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coalgebra-based generic decision procedures and complexity bounds for modal and hybrid logics
基于代数的通用决策程序以及模态和混合逻辑的复杂性界限
  • 批准号:
    59369218
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Developing a Statewide Professional Development Network for Effective Teaching of Undergraduate Quantitative Reasoning Course
建立全州专业发展网络,以实现本科定量推理课程的有效教学
  • 批准号:
    2216197
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Improving Quantitative Reasoning through General Education Science Courses
通过通识教育科学课程提高定量推理
  • 批准号:
    2044372
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CPS: Frontier: Collaborative Research: Compositional, Approximate, and Quantitative Reasoning for Medical Cyber-Physical Systems
CPS:前沿:协作研究:医疗网络物理系统的组合、近似和定量推理
  • 批准号:
    2028677
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Building Capacity: A Faculty Development Program to Increase Students' Quantitative Reasoning Skills
能力建设:提高学生定量推理技能的教师发展计划
  • 批准号:
    1832507
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Environmental Data-Driven Inquiry and Exploration (EDDIE): Using Large Datasets to Build Quantitative Reasoning
协作研究:环境数据驱动的查询和探索(EDDIE):使用大型数据集构建定量推理
  • 批准号:
    1821567
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Institutional and Community Transformation for Teaching and Learning Quantitative Reasoning in the Biological Sciences
合作研究:生物科学定量推理教学的机构和社区转型
  • 批准号:
    1821169
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Institutional and Community Transformation for Teaching and Learning Quantitative Reasoning in the Biological Sciences
合作研究:生物科学定量推理教学的机构和社区转型
  • 批准号:
    1821249
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Institutional and Community Transformation for Teaching and Learning Quantitative Reasoning in the Biological Sciences
合作研究:生物科学定量推理教学的机构和社区转型
  • 批准号:
    1821179
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Building Capacity for Interdisciplinary Quantitative Reasoning Instruction
跨学科定量推理教学能力建设
  • 批准号:
    1822414
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Environmental Data-Driven Inquiry and Exploration - Using Large Datasets to Build Quantitative Reasoning
协作研究:环境数据驱动的探究与探索——利用大数据集构建定量推理
  • 批准号:
    1821564
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了