Geometry of Harmonicity

调和几何

基本信息

  • 批准号:
    14340021
  • 负责人:
  • 金额:
    $ 7.74万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

・Bando studied the locally hyperbolically completeness of almost complex manifolds, and also showed the admissibility condition of Einstein-Hermitian metrics can be replaced by a condition which is easier to check.・Nishikawa proposed a framework for a differential geometric proof of Hartshorne conjecture, and obtained the fundamental results. He has also conducted the differential geometric study on the foliation structures of CR-manifolds.・Kenmotsu has extended his study of the periodicity of the surfaces of revolution with periodic mean curvature in the 3-dimensional Euclidean space to the higher dimensional case, and obtained an easier alternate proof of Hsian's result on the classification and construction of the hyper-surfaces of revolution of constant mean curvature.・Takagi studied the dynamics of reaction-diffusion systems of activator-inhibitor type which model morphogenesis in biology, and investigated how various conditions reflect on the location of spikes in the case of dimension 1.・Urakawa studied Yang-Mills theory and also conducted a study which relates graph theory and Riemannian geometry.・Sunada studied the random walks on graphs as an application of the discrete geometric analysis, and established several results on periodic random walks on crystal lattices applying the large deviation theory.・Horihata studied the initial-boundary value problem on Landau-Lifshitz-Gilbert (LLG) equation which is a model equation of magnetics, and constructed a weak solution. If the dimension is greater than 2, the weak solution converges to a constant in the infinit time provided the boundary value is a constant.
Bando研究了几乎复流形的局部双曲完备性,并证明了Einstein-Hermite度量的可容许性条件可以用一个更容易检验的条件来代替。·Nishikawa提出了HartShorne猜想的一个微分几何证明框架,并得到了基本结果。他还对CR-流形的叶状结构进行了微分几何研究。·Kenmotsu将他对三维欧氏空间中具有周期平均曲率的旋转曲面的周期性的研究推广到高维情形,并得到了Hsian关于常平均曲率旋转超曲面的分类和构造结果的一个更容易的替代证明。·Takagi研究了在生物学中模拟形态发生的激活剂-抑制型反应-扩散系统的动力学,并研究了在维度1的情况下,各种条件如何反映尖峰的位置。·Urakawa研究了Yang-Mills理论,并进行了将图论与黎曼几何联系起来的研究。·Sunada作为离散几何分析的一个应用,研究了图上的随机游动,并应用大偏差理论建立了关于晶格上周期随机游动的几个结果。·Horihata研究了作为磁学模型方程的Landau-Lifshitz-Gilbert(LLG)方程的初边值问题,并构造了弱解。如果维度大于2,则在边值为常数的情况下,弱解在无限时间内收敛到常数。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Kenmotsu: "Surfaces of revolution with periodic mean curvature"Osaka Jour.Math.. 40. 687-696 (2003)
K.Kenmotsu:“具有周期平均曲率的旋转表面”Osaka Jour.Math.. 40. 687-696 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Surfaces With Constant Mean Curvature
  • DOI:
    10.1090/mmono/221
  • 发表时间:
    2003-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Kenmotsu
  • 通讯作者:
    K. Kenmotsu
An obstruction for Chem class forms to be harmonic
Chem 类形式和谐的障碍
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W.-M.Ni;K.Suzuki;I.Takagi;H.Nakamura;H.Nakamura;S.Bando
  • 通讯作者:
    S.Bando
Globalsolutions to a one-dimensional nonlinear parabolic system modeling colonial formation by chemotactic bacteria
模拟趋化细菌菌落形成的一维非线性抛物线系统的全局解决方案
H.Urakawa: "Yang-Mills theory over compact symplectic manifolds"Annals Global Analysis Geometry. (to appear). (2004)
H.Urakawa:“紧辛流形上的杨-米尔斯理论”年鉴全局分析几何。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BANDO Shigetoshi其他文献

BANDO Shigetoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BANDO Shigetoshi', 18)}}的其他基金

Differential geometry of complex and almost complex manifolds
复流形和准复流形的微分几何
  • 批准号:
    20540057
  • 财政年份:
    2008
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complex Manifolds and Gauge Theory
复流形和规范理论
  • 批准号:
    09440027
  • 财政年份:
    1997
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了