Applied singularity theory to exterior differential systems
将奇点理论应用于外微分系统
基本信息
- 批准号:14340020
- 负责人:
- 金额:$ 7.62万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The following results are obtained : Classification of generic singularities in geometric solutions to Monge-Ampere equations. Clarification of Goursat-Legendre correspondence. Basic investigations on singular Legendre submanifolds, in particular singular Legendre curves. Bifurcation of singularities of developables. Estimate on doubly degenerate submanifolds under projective duality. Introduction of the notion of singular coisotropic mappings. Proof of the localization theorem on the symplectic moduli spaces. Basic study on mapping space quotients. Classification theory of singular Legendre knots. Discovery of new singularities of solutions to Monge-Ampere equations in dimension three. Classification of uni-modal curve singularities and determination of their symplectic moduli spaces. Discovery of remarkable similarity between diffeomorphism classification of plane curve singularities and contactomorphism classification of associated Legendre curve singularities.
得到了以下结果:Monge-Ampere方程几何解中类属奇点的分类。Goursat-Legendre对应关系的澄清。奇异勒让德子流形的基本研究,特别是奇异勒让德曲线。可展项的奇点分支。投射对偶下双退化子流形的估计。引进奇异余迷向映射的概念。辛模空间上局部化定理的证明。空间映射的基础研究。奇异勒让德纽结的分类理论。发现三维Monge-Ampere方程解的新奇点。单峰曲线奇点的分类及其辛模空间的确定。发现了平面曲线奇点的自同构分类与伴随Legendre曲线奇点的接触自同构分类之间的显著相似性。
项目成果
期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symplectic Bifurcations of Plane Curves and Isotropic Liftings
- DOI:10.1093/qjmath/54.1.73
- 发表时间:2003-03
- 期刊:
- 影响因子:0.7
- 作者:G. Ishikawa;S. Janeczko
- 通讯作者:G. Ishikawa;S. Janeczko
Perturbations of Caustics and Fronts, Vol.62
焦散和前沿的扰动,第 62 卷
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Masatoshi KOKUBU;Masaaki UMEHARA;Kotaro YAMADA;G.Ishikawa
- 通讯作者:G.Ishikawa
G.Ishikawa, M.Kimura, R.Miyaoka: "Submanifolds with degenerate Gauss mappings in spheres"Advanced Study in Pure Mathematics. 37. 115-149 (2002)
G.Ishikawa、M.Kimura、R.Miyaoka:“球体中具有简并高斯映射的子流形”纯数学高级研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Equivariant Chern classes for singular algebraic varieties with group actions
具有群作用的奇异代数簇的等变陈氏类
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:F.Aicardi;T.Ohmoto;Toru Ohmoto
- 通讯作者:Toru Ohmoto
T.Ohmoto: "Self-intersection class for singularities and its application to fold maps"Transaction of American Mathematical Society. 355-9. 3825-3838 (2003)
T.Ohmoto:“奇点的自交类及其在折叠图中的应用”美国数学会汇刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIKAWA Goo其他文献
ISHIKAWA Goo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIKAWA Goo', 18)}}的其他基金
The construction of infinite dimensional singularity theory of completely non-integrable systems and its applications to the singular motion-planning problem
完全不可积系统无限维奇点理论的构建及其在奇异运动规划问题中的应用
- 批准号:
23654058 - 财政年份:2011
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Projective contact geometry and singularity theory
射影接触几何和奇点理论
- 批准号:
10440013 - 财政年份:1998
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




