A study of representations and finite group actions realizing a given fixed point set

实现给定不动点集的表示和有限群动作的研究

基本信息

项目摘要

Let G be a finite group not of prime power order. For a prime p, we denote by O^p(G), called the Dress group of type p, the smallest normal subgroup of G with p-power index. The group G is said to be a gap group if there exists a G-module V such that dim V^<O^2(G)>=0 for any prime p and dim V^P>2dim V^H for any pair (P,H) of subgroups of G with some condition. Note that a Dress subgroup of a gap group G is not of prime power order.I show that G is a gap group if and only if all subgroups L of G, possessing cyclic quotients L/O^2(G), are gap groups. Now assume that G/O^2(G) is cyclic. As viewing the series of normal groupsG=G_0〓G_1〓G_2〓【triple bond】〓G_k=O^2(G),[G_j,G_<j-1>]=2,I obtained that G is a gap group if and only if each G_j(0<j<k) is a gap group. I define a subset E_j of 2-elements h of G_j\G_<j-1> by using a form of the centralizer C_G(h). We can easily decide whether the set E_j is empty or not, for example, letting j>1,E_j is not empty if there exists an element of G_j\G_<j-1> not of prime power order. It is a little bit complication to decide whether E_1 is empty. Then I showed that all E_j are nonempty if and only if G is a gap group. Furthermore, I obtained that if G×【triple bond】×G is a gap group,then so is G×G.
设G是非素数幂阶数的有限群。对于素数p,我们记为O^p(G),称为p型衣群,是G的具有p次方指数的最小正规子群。群G称为缺口群,如果存在一个G-模V,使得对任何素数p有dim V^&lt;O^2(G)&gt;=0,对G的任何子群对(P,H)有dim V^P&gt;2dim V^H且满足一定条件。证明了G是Gap群的当且仅当G的所有具有循环商L/O^2(G)的子群是Gap群。现在假设G/O^2(G)是循环的。通过考察G=G_0〓G_1〓G_2〓[三键]〓G_k=O^2(G),[G_j,G_t;j-1&gt;]=2,得到G是间隙群的充要条件是每个G_j(0&lt;j&lt;k)都是间隙群。利用中心化子C_G(H)的形式定义了G_j\G_t;j-1&gt;的2元h的子集E_j。我们可以很容易地判断集合E_j是否为空,例如,如果存在G_j\G_1&t;j-1&gt;的元素,则设j&>1,E_j不为空。判断E_1是否为空有点复杂。然后证明了所有E_j非空当且仅当G是间隙群。进一步得到,如果G×[三键]×G是间隙群,那么G×G也是间隙群。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Donald Stanley and Jeffrey Strom, Implications of the Ganea condition
唐纳德·斯坦利和杰弗里·斯特罗姆,Ganea 状况的影响
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Norio Iwase;Donald Stanley;Jeffrey Strom;Norio Iwase
  • 通讯作者:
    Norio Iwase
Gap modules for semidirect product groups
半直接产品组的间隙模块
L-S categories of simply-connected compact simple Lie groups of low rank
低阶单连紧单李群的 L-S 类
2-elements outside of the Dress subgroup of type 2
类型 2 的 Dress 子组之外的 2 个元素
Implications of the Ganea condition
Ganea 条件的影响
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L.A.Lucas;O.Saeki;Benaissa Bernoussi et al.;Osamu Saeki et al.;Walter Motta et al.;Benaissa Bernoussi et al.;Benaissa Bernoussi et al.;V.Blanl〓il et al.;Norio Iwase et al.;岩瀬則夫;Norio Iwase et al.
  • 通讯作者:
    Norio Iwase et al.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUMI Toshio其他文献

SUMI Toshio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUMI Toshio', 18)}}的其他基金

Flexibilities of finite group actions on manifolds
流形上有限群作用的灵活性
  • 批准号:
    24540083
  • 财政年份:
    2012
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of representations appeared as the tangential spaces of manifilds at fixed points
对表示形式的研究显示为固定点流形的切线空间
  • 批准号:
    17540084
  • 财政年份:
    2005
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了