Studies on.the structure of.methods, of.sequential estimation

序贯估计方法结构的研究

基本信息

  • 批准号:
    14540107
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

Head Investigator and each of the investigators obtained the research results concerning the title of this project directly or indirectly. The main results by head investigator are as follows.(1)We consider the point estimation problem of the powers of a standard deviation of a normal distribution with unknown mean and variance when the loss function is squared error plus linear cost. When we estimate them by using the smallest sample size such that the risk is minimized, the asymptotic optimal sample size contains the unknown parameter. Therefore we propose a sequential estimator and obtain the asymptotic expansions of the expected sample size and the risk of the sequential estimator as the cost per unit sample approaches zero.(2)We consider the point estimation problem of the powers of scale parameter of a normal distribution. We want to estimate the powers by using the smallest sample size such that the risk is less than or equal to a preassigned error bound when the risk is mean squared error. In this case the asymptotic optimal sample size contains the unknown parameter. Therefore we define a stopping rule and show that the risk is less than or equal to the error bound. Also, we consider the problem of estimating a scale parameter of an exponential distribution when the loss function is squared error plus linear cost.(3)We consider the bounded risk point estimation problem of the powers of scale parameter of an exponential distribution. We want to estimate the powers by using the smallest sample size such that the risk is less than or equal to a preassigned error bound when the risk is mean squared error. This smallest sample size cannot be used in practice, because it contains the unknown parameter. Therefore we propose a stopping rule and show that the condition of the risk is satisfied for sufficiently small error bound.
主要研究者和每位研究者直接或间接获得了与本项目标题相关的研究结果。主要研究者的主要结果如下。(1)We考虑损失函数为平方误差加线性成本时,均值和方差均未知的正态分布的标准差的幂的点估计问题。当我们用最小样本量估计它们时,使得风险最小化,渐近最优样本量包含未知参数。因此,我们提出了一个序贯估计,并获得了期望样本容量和序贯估计的风险的渐近展开的单位样本成本接近零。(2)We考虑正态分布尺度参数幂的点估计问题。我们希望通过使用最小样本量来估计功效,使得当风险为均方误差时,风险小于或等于预先指定的误差界。在这种情况下,渐近最优样本量包含未知参数。因此,我们定义了一个停止规则,并证明了风险小于或等于误差界。此外,我们考虑的问题,估计指数分布的尺度参数时,损失函数的平方误差加上线性成本。(3)We考虑指数分布尺度参数的幂的有界风险点估计问题。我们希望通过使用最小样本量来估计功效,使得当风险为均方误差时,风险小于或等于预先指定的误差界。这个最小样本量在实践中不能使用,因为它包含未知参数。因此,我们提出了一个停止规则,并证明了风险的条件是满足足够小的误差界。

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chikara Uno: "Sequential point estimation of the powers of a normal scale parameter"Metrika. 55. 215-232 (2002)
Chikara Uno:“正常尺度参数的幂的顺序点估计”Metrika。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Eiichi Isogai: "Sequential estimation of the powers of normal and exponential scale parameters"Sequential Analysis. 22. 129-149 (2003)
Eiichi Isogai:“正态和指数尺度参数的幂的序列估计”序列分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Ali, E.Isogai: "Sequential point estimation of the powers of an exponential scale parameter"Sci.Math.Jpn. 58. 39-53 (2003)
M.Ali,E.Isogai:“指数尺度参数幂的顺序点估计”Sci.Math.Jpn。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tomonari Suzuki: "On Downing-Kirk's theorem"J.Math.Anal.Appl.. 286. 453-458 (2003)
Tomonari Suzuki:“论唐宁-柯克定理”J.Math.Anal.Appl.. 286. 453-458 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tomonari Suzuki: "Strong convergence theorem to common fixed points of two nonexpansive mappings in general Banach spaces"Journal of Nonlinear and Convex Analysis. 3. 381-391 (2002)
Tomonari Suzuki:“一般巴纳赫空间中两个非扩张映射的公共不动点的强收敛定理”非线性与凸分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISOGAI Eiichi其他文献

ISOGAI Eiichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISOGAI Eiichi', 18)}}的其他基金

Methodology of sequential procedures and its applications
顺序过程方法及其应用
  • 批准号:
    23540128
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on statistical sequential estimation problems by the method of sequential analysis
用序贯分析方法研究统计序贯估计问题
  • 批准号:
    18540117
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on efficiency of statistical methods of sequential estimation
序贯估计统计方法的有效性研究
  • 批准号:
    16540099
  • 财政年份:
    2004
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the optimality of methods of statistical sequential decisions
统计序贯决策方法的最优性研究
  • 批准号:
    11640106
  • 财政年份:
    1999
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A sequential analytic approach to the methods of optiaml statistical decisions
最优统计决策方法的序贯分析方法
  • 批准号:
    09640251
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了