An unified approach on security evaluation against sidechannel attacks on cryptographic algorithms

密码算法侧通道攻击安全评估的统一方法

基本信息

  • 批准号:
    15300004
  • 负责人:
  • 金额:
    $ 8.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

Mobile devices such as smartcards are penetrating in our daily life in order for us to be comfortable. When cryptographic schemes are implemented on computers such as smartcards, side channel attacks are particular menaces to them. Since electric power is provided from the outside of them, the attacker can observe the power consumption while they perform cryptographic operations. In side channel attacks, the attacker utilizes the power consumption for revealing the secret, since the power consumption is usually linked to the operations associated with the secret key.The aim of this research to construct efficient countermeasures against side channel attacks. For this purpose, we first attempt to attack the known countermeasures, and study the essence of side channel attacks. Then, we utilizes the essence for constructing efficient countermeasures which are suitable for the mobile devices.(1)We propose two novel attacks against known countermeasures. One is a side channel attack against … More Oswald's countermeasure, and the other is a second-order differential power analysis against M″oller's countermeasure. Oswald proposed a randomized addition-subtraction chains countermeasure, which utilizes a signed digit representation of an integer together with randomization. And we also show the vulnerability of countermeasures with pre-computation table. We also propose two novel countermeasures against side channel attacks. One is a countermeasure using the Montgomery form of elliptic curves, and the other is a countermeasure using the width-w non-adjacent form. Montgomery proposed the Montgomery form of elliptic curves in order to accelerate the elliptic scalar multiplication.(2)We discuss a possible attack against "Randomized Binary Signed Digits", and give some attack on this protection. We also study the cryptosystem XRT with comparision to conventional discrete-log cryptosystems.(3)Security of Koblitz-curve based cryptosystems is discussed from the view point of sidechannel cryptoanalysis, and proposed two counter measures against known attacks. A future research topic is study on sidechannel attacks and their counter measures. Less
为了让我们感到舒适,智能卡等移动设备正在渗透到我们的日常生活中。当加密方案在诸如智能卡之类的计算机上实施时,侧通道攻击对它们是特别的威胁。由于电力是从它们的外部提供的,所以攻击者在执行加密操作时可以观察到功耗。在侧信道攻击中,攻击者利用功率消耗来泄露秘密,因为功率消耗通常与与密钥相关的操作相关联,该研究的目的是构建有效的对抗侧信道攻击的对策。为此,我们首先尝试对已有的攻击对策进行攻击,并研究侧向通道攻击的本质。然后,我们利用这一本质来构造适用于移动设备的高效对策。(1)针对已有对策提出了两种新的攻击方法。一种是针对…的旁路攻击更多的是奥斯瓦尔德的对策,另一种是针对莫勒的对策的二阶微分功率分析。Oswald提出了一种随机化加减链对策,它利用了整数的带符号数字表示和随机化。并以预计算表的形式展示了对策的脆弱性。我们还提出了两种新的抗侧信道攻击的对策。一种是使用椭圆曲线的蒙哥马利形式的对策,另一种是使用宽度w非相邻形式的对策。为了加速椭圆标量乘法运算,Montgomery提出了椭圆曲线的Montgomery形式。(2)讨论了针对随机二进制有符号数字的一种可能的攻击,并给出了对这种保护的一些攻击。并与传统的离散对数密码体制进行了比较。(3)从边通道密码分析的角度讨论了基于Koblitz曲线的密码体制的安全性,并提出了两种针对已知攻击的对策。侧向通道攻击及其对抗技术的研究是今后的研究方向。较少

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Representations on Koblitz Curves with Resistance to Side Channel Attacks
  • DOI:
    10.1007/11506157_19
  • 发表时间:
    2005-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Okeya;T. Takagi;Camille Vuillaume
  • 通讯作者:
    K. Okeya;T. Takagi;Camille Vuillaume
高度版ランダム化加算減算鎖法に対する多重電力解析
高级随机加减链法的多重功效分析
桶屋 勝幸, 櫻井 幸一: "サイドチャネル攻撃へのウィンドウ法を用いた防御法に対する2階電力差分攻撃"情報処理学会論文誌. 44・8. 1938-1946 (2003)
Katsuyuki Okeya、Koichi Sakurai:“针对侧信道攻击的窗口方法的二阶功率微分攻击”,日本信息处理学会会刊 44・8(2003 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Short Memory Scalar Multiplication on Koblitz Curves
  • DOI:
    10.1007/11545262_7
  • 发表时间:
    2005-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Okeya;T. Takagi;Camille Vuillaume
  • 通讯作者:
    K. Okeya;T. Takagi;Camille Vuillaume
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAKURAI Kouichi其他文献

SAKURAI Kouichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAKURAI Kouichi', 18)}}的其他基金

A study on construction of computationally independent one-way functions and their application to cryptographic protocol
计算独立单向函数的构造及其在密码协议中的应用研究
  • 批准号:
    23650008
  • 财政年份:
    2011
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A study on evaluating Insider Threats and fighting against Insider attacks in Cyber Systems
评估网络系统中的内部威胁和对抗内部攻击的研究
  • 批准号:
    23300027
  • 财政年份:
    2011
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design and Security Analysis of Cryptographic Protocol for Privacy-Preserving Data Mining
隐私保护数据挖掘密码协议设计与安全分析
  • 批准号:
    20300005
  • 财政年份:
    2008
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of Distributed Cryptography and its application to Electronic Commerce Systems
分布式密码理论及其在电子商务系统中的应用
  • 批准号:
    12480073
  • 财政年份:
    2000
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on public-key cryptosystems from hyperelliptic-curves
基于超椭圆​​曲线的公钥密码系统研究
  • 批准号:
    11558033
  • 财政年份:
    1999
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design and analysis of public-key encryption algorithms from computationally intractable problems.
从计算上棘手的问题来设计和分析公钥加密算法。
  • 批准号:
    10205220
  • 财政年份:
    1998
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了