Numerical and mathematical analysis to low-dimensional solutions in. mathematical fluid problems
数学流体问题低维解的数值和数学分析
基本信息
- 批准号:15340034
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) We consider problems of point vortices in a plane, which are described by the two-dimensional Euler equation. (i) Stability of relative equilibria for five point vortices is treated. We found that some unstable configurations exhibit the relaxation oscillation. Four and three point vortices which exhibit the relaxation oscillation are also found. Mathematical justifications are made. (ii) When vortices come close each other, numerical difficulty occurs. To overcome this difficulty, we propose a numerical scheme.(2) We consider the point vortices in a sphere. When two vortices are fixed at the poles of sphere, the stability of some configuration and reduction to a center manifold are shown.(3) Three-dimensional linear instability of vortex flow is considered. By using spectral theory with Hamiltonian, we found a primary factor of instability for some cases.(4) To analyze the instability of vortex ring in the nonlinear region, we introduce a weakly nonlinear system by multi-scale methods. By using this system, we found the mechanism of the Windall instability and unstable modes.(5) By singular limit methods, we propose and analyze the numerical methods to the classical one-phase Stefan problems and the flow through porous media.(6) For immiscible two-phase flow, we consider a flux-free finite element method, which shows good conservation of mass. We obtain error estimates and convergence of numerical solution.(7) We apply a numerical verification method to the driven cavity problem, which is one of famous two-dimensional fluid problems. We succeeded in the verification of some steady solutions.
(1)我们考虑平面中点涡的问题,它是由二维欧拉方程描述的。(i)本文讨论了五点涡相对平衡点的稳定性。我们发现一些不稳定的组态表现出弛豫振荡。还发现了四点涡和三点涡的弛豫振荡,并给出了数学证明。(ii)当旋涡彼此靠近时,数值计算就困难了。为了克服这个困难,我们提出了一个数值方案。(2)我们考虑球中的点涡。当两个涡固定在球的极点时,给出了某些位形的稳定性和中心流形的约化。(3)考虑了三维线性涡不稳定性。利用谱理论和哈密顿量,我们找到了某些情况下的主要不稳定因素。(4)为了分析涡环在非线性区域的不稳定性,我们采用多尺度方法引入了一个弱非线性系统。利用该系统,我们发现了Windall不稳定性和不稳定模式的机制。(5)利用奇异极限方法,提出并分析了经典单相Stefan问题和多孔介质渗流问题的数值解法。(6)对于不互溶两相流,我们考虑了一种无通量有限元方法,它显示出良好的质量守恒。得到了误差估计和数值解的收敛性。(7)本文对二维流体力学中著名的驱动空腔问题进行了数值验证。我们成功地验证了一些稳定的解决方案。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transition of global dynamics of a polygonal vortex ring on a sphere with pole vortices
具有极涡的球体上多边形涡环的全局动力学转变
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Sakajo
- 通讯作者:T.Sakajo
Relaxation oscillations of point vortices in a plane
平面内点涡的弛豫振荡
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Nakaki;T.
- 通讯作者:T.
H.Murakawa, T.Nakaki: "A singular limit approach to moving boundary problems and its applications"Theoretical and Applied Mechanics Japan. 52. 255-260 (2003)
H.Murakawa、T.Nakaki:“移动边界问题的奇异极限方法及其应用”日本理论与应用力学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Benchmark problems for numerical schemes to passively transported interface
无源传输接口数值方案的基准问题
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Fujima;K.Ohmori
- 通讯作者:K.Ohmori
High-dimensional heteroclinic, and homoclinic connections in odd point-vortex system on sphere with pole vortices
具有极涡的球体上奇点涡系统中的高维异宿和同宿连接
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Saito;K.Takeuchi;A.Suzuki;B.-F.Feng;T.Sakajo;T.Sakajo
- 通讯作者:T.Sakajo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAKI Tatuyuki其他文献
NAKAKI Tatuyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}