Research of fluctuations of phase boundaries in large interacting systems from the probabilistic point of view

从概率角度研究大型相互作用系统相界涨落

基本信息

  • 批准号:
    15340032
  • 负责人:
  • 金额:
    $ 9.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

The main aim of this research is to understand the fluctuation of phase boundaries appearing in many mathematical models of phase transitions from the probabilistic view point. Essentially, we could do it only for the Widom-Rowlinson model in two dimensions as a conditional central limit theorem for phase boundaries. However, this type of phenomenon is now well understood during these four years by the works of Ioffe, Bodineau and others. There still remains to be understood related to this problem but we understand that the main problem is solved.Our second aim was to understand the transition mechanism in percolation when the underlying graph has no translations which act as group of automorphisms of the underlying graph. A typical problem is in the case where the graph has infinitely ramified fractal structure. As an example, percolation in the Sierpinski carpet lattice has not been understood well. We could prove that percolation is sharp for this model. This has been open since 1997. The sharpness of the percolation transition is understood as1.there is only one critical point2.below the critical point, the connectivity function decays exponentially3. above the critical point, the infinite cluster is unique and the dual connectivity decays exponentially with respect to the dual graph distance.
本研究的主要目的是从概率的观点来理解出现在许多相变数学模型中的相边界的涨落。本质上,我们只能对二维Widom-Rowlinson模型做这件事,作为相边界的条件中心极限定理。然而,这种类型的现象,现在很好地理解在这四年的作品约费,博迪诺和其他人。还有仍然有待了解有关这个问题,但我们知道,主要的问题是解决了。我们的第二个目标是要了解的过渡机制渗流时,底层图形没有翻译的行为组的自同构的底层图形。一个典型的问题是在图具有无限分歧分形结构的情况下。作为一个例子,在谢尔宾斯基地毯晶格中的渗流还没有得到很好的理解。我们可以证明这个模型的渗流是尖锐的。自1997年以来一直开放。逾渗转变的尖锐性被理解为:1.只有一个临界点2.在临界点以下,连通性函数呈指数衰减3。在临界点以上,无限簇是唯一的,对偶连通性相对于对偶图距离呈指数衰减。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Infinite systems of non-colliding Brownian particles.
非碰撞布朗粒子的无限系统。
On multidimensional inverse scattering for Stark Hamiltonians
斯塔克哈密顿量的多维逆散射
Directed polymers in random environment are diffusive at weak disorder
  • DOI:
    10.1214/009117905000000828
  • 发表时间:
    2004-11
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    F. Comets;N. Yoshida
  • 通讯作者:
    F. Comets;N. Yoshida
統計力学-相転移の数理
统计力学 - 相变数学
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    黒田耕嗣;樋口保成
  • 通讯作者:
    樋口保成
Gap series and functions of bounded variation,
间隙级数和有界变分函数,
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Tsuda;T.Masuda;K.Fukuyama;M.Noro;K.Matsumoto;K.Fukuyama
  • 通讯作者:
    K.Fukuyama
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIGUCHI Yasunari其他文献

HIGUCHI Yasunari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HIGUCHI Yasunari', 18)}}的其他基金

Probabilistic study toward scaling limits of the phase separation line and scaling exponents
相分离线和标度指数的标度极限的概率研究
  • 批准号:
    23540136
  • 财政年份:
    2011
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the formation and fluctuation of random shapes in mathematical models of statistical mechanics
统计力学数学模型中随机形状的形成与涨落研究
  • 批准号:
    12440027
  • 财政年份:
    2000
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of Critical Phenomena in Random Systems
随机系统中的临界现象分析
  • 批准号:
    09440079
  • 财政年份:
    1997
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Study of electronic dynamics on Metal-Insulator phase boundary of lambda-BETS salts
lambda-BETS盐金属-绝缘体相界电子动力学研究
  • 批准号:
    23K04685
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient green materials conversion by controllingdynamics of adsorbed molecules in phase boundary regions
通过控制相边界区域吸附分子的动力学实现高效绿色材料转化
  • 批准号:
    23H00313
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: Fundamental investigation of twin boundary engineering through cyclic cross-phase-boundary thermomechanical processing
职业:通过循环跨相边界热机械加工对孪晶边界工程进行基础研究
  • 批准号:
    2240125
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Continuing Grant
Magnetic Phase Boundary Mapping for the Discovery of Emergent Properties in Intermetallic Magnets
用于发现金属间磁体中突现特性的磁相边界测绘
  • 批准号:
    2233902
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Continuing Grant
Development of high-performance lead-free piezoelectric single crystals by formation of phase boundary and domain engineering
通过相界和域工程的形成开发高性能无铅压电单晶
  • 批准号:
    20K05073
  • 财政年份:
    2020
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Engineering triple-phase boundary for superior aqueous metal-air batteries
设计优质水系金属-空气电池的三相边界
  • 批准号:
    DE190100445
  • 财政年份:
    2019
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Discovery Early Career Researcher Award
Phase boundary mapping for the discovery of improved thermoelectrics
用于发现改进热电材料的相界测绘
  • 批准号:
    2309937
  • 财政年份:
    2019
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Studentship
Viscosity and phase boundary predictions through coarse grained molecular modelling
通过粗粒分子模型预测粘度和相界
  • 批准号:
    2292575
  • 财政年份:
    2018
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Studentship
Study on competing states at the Morphotorpic Phase Boundary of relaxor ferroelectrics by rapid quench
快速淬灭弛豫铁电体形变相界竞争态研究
  • 批准号:
    18K03502
  • 财政年份:
    2018
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physics of three-phase boundary line considered from molecular scale
从分子尺度考虑三相边界线物理
  • 批准号:
    16K06126
  • 财政年份:
    2016
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了