虚数乗法を持つアーベル多様体のL関数とモチーフ的コホモロジーの研究

虚乘阿贝尔簇的L函数和类基序上同调研究

基本信息

  • 批准号:
    15740004
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

当研究は、リーマン・ゼータ関数の一般化である代数体上の代数多様体のL関数を、その多様体のモチーフ的コホモロジーとそのレギュレーター写像によって理解することを目的にしている。数論におけるさまざまな予想、たとえばバーチ・スウィナートン・ダイアー予想、テイト予想、ブロック・加藤予想などはこの視点で捉えられる。モチーフ的コホモロジーは代数的サイクルの一般化でもあり、代数多様体上の部分多様体やその上の関数によって定義される。したがって非常に特別な場合を除いてはその構造は分かっていない。当研究では虚数乗法を持つアーベル多様体、特にヤコビ多様体の場合にモチーフ的コホモロジーにL関数の性質を反映するような元を構成することを目標とするが、フェルマー型のアーベル多様体にそのような元を構成し、そのレギュレーターがある特殊関数の特殊値で書けることが分かった。ベイリンソン予想との関係は引き続き研究中である。昨年度に続き、局所体上の代数多様体のモチーフ的コホモロジーとそのレギュレーター写像についても研究を行った。特に、楕円曲線、またはその積のp進レギュレーター写像(モチーフ的コホモロジーのp進完備化からp進ホッヂ理論を通してド・ラーム・コホモロジーに定義される写像)の全射性に関する研究を行い進展を得た。この研究には、代数的サイクルや局所体上の曲線の類体論への応用がある。当研究を進めるために国内の研究集会等に参加し、専門家との交流を行った。特に山崎隆雄氏(筑波大学)、Andreas Langer氏(名古屋大学客員)、佐藤周友氏(名古屋大学)らと討論を行った。また、数値的な側面からも研究を進めるためにソフトウェアMathematicaを用いた計算も行った。
When studying the generalization of the number of pairs of algebras, the number of pairs of pairs of algebras, the number of Number theory The general definition of the algebraic structure, the partial structure of the algebraic structure, and the definition of the algebraic structure. For a very special occasion, the structure is divided into two parts. When studying the virtual number method, we hold the method of "multi-body" and "special multi-body", and reflect the properties of "multi-body" and "special multi-body" by the method of "multi-body" and "special multi-body". The relationship between the two groups is discussed in detail. In the past year, the study of algebraic diversity in the field of computer science was carried out. Progress has been made in the study of holoreflectivity in the theory of holoreflectivity of the product of special, curved lines and holohedral images (the definition of holohedral images). This study is based on the algebraic theory of curves on the body of the algebra. When the research is advanced, participate in the domestic research meeting, etc., and communicate with each other Takao Yamazaki (Tsukuba University), Andreas Langer (Nagoya University Guest), Shutomu Sato (Nagoya University) The bottom line of mathematics is to study and calculate.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

大坪 紀之其他文献

大坪 紀之的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('大坪 紀之', 18)}}的其他基金

超幾何関数論の数論幾何学的な新展開
超几何函数论算术与几何的新进展
  • 批准号:
    24K06682
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
数論的な代数多様体の代数的サイクルやモチヴィック・コホモロジーの研究
算术代数簇的代数环和动机上同调研究
  • 批准号:
    99J09842
  • 财政年份:
    1999
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
非可換代数幾何学とホッホシルトコホモロジー論におけるコシュールAS正則環の研究
非交换代数几何中Koshur AS正则环与Hochschild上同调理论的研究
  • 批准号:
    24K06653
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
代数幾何学の計算機による研究の新展開
代数几何计算机研究的新进展
  • 批准号:
    23K20209
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
非可換代数幾何学の研究
非交换代数几何研究
  • 批准号:
    23K20208
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
代数幾何学の特異点論による機械学習理論の解析およびその応用
利用代数几何奇点理论分析机器学习理论及其应用
  • 批准号:
    24K15114
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
  • 批准号:
    2349244
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
可換環論的性質に着目した概観論の研究とその混標数代数幾何学への応用
交换代数性质的天气理论研究及其在混合目标代数几何中的应用
  • 批准号:
    24KJ1085
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Algebraic Geometry and Strings
代数几何和弦
  • 批准号:
    2401422
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了