Functional Analysis of Quantum Systems with Infinite Degree ofFir Freedom
无限自由度量子系统的泛函分析
基本信息
- 批准号:16340050
- 负责人:
- 金额:$ 7.88万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) We proved the Haag duality for half-infinite regions in pure states of 1-dim quantum spin chain.As a corollary, we see that translationally invariant pure ground states of 1-dim finite range Hamiltonians have the split property.(2)A translationally invariant pure state of a 1-dim quantum spin chain contains one copy of infinite entanglement if and only if the state does not have the split property provided that Alice and Bob systems are half-infinite regions of the 1-dim lattice.We also considered the case when the state is not pure but factor. In such cases, the state contains one copy of infinite entanglement if and only if the Bell's constant attains its maximal value for any normal states relative to the given one. In particular, the Gibbs states for short range interactions cannot contain one copy of infinite entanglement because the Bell's constant takes its minimum value 1. New examples of states which are not pure can be provided by non-equilibrium steady states(NESS).(3)We consider an analogue-of NESS for Bose systems with condensation. We found that Josephson current is non-vanishing for coupled Bosons with the same temperature.(4)We studied fluctuation property of entropy production of NESS in the sense of D.Ruelle and obtained the law of large number under the assumption that the time evolution of the system has certain mixing property(Asymptotic Abelian).We also investigated an analogue of the central limit theorem for entropy production. For some cases, the limit is not Gaussian.
(1)证明了一维量子自旋链纯态中半无限区域的Haag对偶性。作为推论,我们看到一维有限范围哈密顿量的平移不变纯基态具有分裂性质。(2)一维量子自旋链的平移不变纯态包含一个无限纠缠的副本当且仅当态不具有分裂性质时,如果Alice和Bob系统是一维晶格的半无限区域。我们还考虑了当态不是纯的而是因子的情况。在这种情况下,当且仅当贝尔常数达到相对于给定状态的任何正常状态的最大值时,该状态包含无限纠缠的一个副本。特别是,短程相互作用的Gibbs态不能包含一个无限纠缠的副本,因为贝尔常数取最小值1。非平衡定态(Ness)可以提供不纯态的新例子。(3)我们考虑了玻色凝聚系统的Ness的模拟。我们发现,对于相同温度的耦合玻色子,约瑟夫森流是不为零的。(4)在假设系统的时间演化具有一定的混合性(渐近阿贝尔性)的情况下,我们研究了在D.Ruelle意义下Ness的熵产生的涨落性质,得到了大数定律,并研究了类似的熵产生中心极限定理。在某些情况下,限制不是高斯的。
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fiber Hamiltonians in non-relativistic quantum electrodynamics
非相对论量子电动力学中的光纤哈密顿量
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Hiroshima;Fumio
- 通讯作者:Fumio
On the absence of non-periodic ground states for the antiferromagnetic XXZ model
关于反铁磁 XXZ 模型不存在非周期性基态的问题
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.;Matsui
- 通讯作者:Matsui
Nonequilibrium Steady States with Bose-Einstein Condensates
玻色-爱因斯坦凝聚态的非平衡稳态
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S. Tasaki;T. Matsui;T.Hida編
- 通讯作者:T.Hida編
Relative position of four subspaces in a Hilbert space
- DOI:10.1016/j.aim.2005.02.004
- 发表时间:2004-04
- 期刊:
- 影响因子:1.7
- 作者:M. Enomoto;Y. Watatani
- 通讯作者:M. Enomoto;Y. Watatani
Free transportation cost inequalities for noncommutative multi-variables
非交换多变量的免费运输成本不等式
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:H.Hiai;Y.Ueda
- 通讯作者:Y.Ueda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUI Taku其他文献
MATSUI Taku的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUI Taku', 18)}}的其他基金
Matrix Product States of Quantum Systems on Higher Dimensional Lattices
高维晶格上量子系统的矩阵积态
- 批准号:
24654042 - 财政年份:2012
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study of Low Dimensional Quantum Systems with Infinite Degree of Freedom by Non-Commutative Functional Analysis
非交换泛函分析低维无限自由度量子系统研究
- 批准号:
12440049 - 财政年份:2000
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




