Research on Geometric Structures, Schwarzian Derivatives of Maps and Partial Differential Equations

几何结构、映射的施瓦茨导数和偏微分方程研究

基本信息

  • 批准号:
    16540085
  • 负责人:
  • 金额:
    $ 1.48万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2007
  • 项目状态:
    已结题

项目摘要

1. The existence and the uniqueness of the so-called Tanaka-Webster connection of a CR structure was reproved by using a Heisenberg frame bundle, in consideration that specific connections are expected to play an important role as the Schwarzian derivatives of transformations in various geometric structures.2. On the underlying contact structure of a CR structure, a necessary and sufficient condition of a Hamiltonian function to generate a contact transformation that preserves the CR structure is established.3. su_2 frame bundle was examined in detail, and shown to be useful in CR geometry, for example, in analyzing the Tanaka-Webster connections.4. It is shown that the deformation parameter of CR structure is explained by complex valued functions, which was used to exhibit the Levi form and the connection coefficients in precise form.5. The notion of Schwarzian derivative for higher dimensional contact transformations was established, which was used to solve an equivalence problem of a certain system of partial differential equations.6. The notion of Schwarzian derivative in CR geometry for strictly contact transformations was established. As the result, the fundamental equation of 3-dimensional CR structure was obtained, and a natural Hermitian structure on the solution space was detected. Finally the equivalence problem of 3 dimensional CR structure was solved.
1.利用Heisenberg框架丛重新证明了CR结构的Tanaka-Webster联络的存在性和唯一性,考虑到特定联络在各种几何结构中作为变换的Schwarzian导数起着重要作用.在CR结构的底层接触结构上,建立了Hamilton函数产生保持CR结构的接触变换的充分必要条件. su_2框架束被详细地检查,并且被证明在CR几何学中是有用的,例如,在分析Tanaka-Webster连接中.研究表明,CR结构的变形参数可以用复变函数来解释,并用复变函数来表示Levi形式和连接系数的精确形式.建立了高维接触变换的Schwarzian导数的概念,并将其用于求解一类偏微分方程组的等价问题.建立了CR几何中严格切触变换的Schwarzian导数的概念。结果得到了三维CR结构的基本方程,并在解空间上发现了一个自然的厄米特结构。最后解决了三维CR结构的等效问题。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
部分複素幾何学と基本方程式
部分复杂几何和基本方程
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hajime SATO;Tetsuya OZAWA;Hiroshi SUZUKI;小沢 哲也
  • 通讯作者:
    小沢 哲也
Noncommutative Geometry and Physics 2005 : Proceedings of Int'l Sendai-Beijing Joint Workshop,2005.
非交换几何与物理2005:国际仙台-北京联合研讨会论文集,2005。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hajime SATO;Tetsuya OZAWA;Hiroshi SUZUKI;小沢 哲也;Tetsuya OZAWA;小沢 哲也;Tetsuya OZAWA;Watamura et al.(eds.)
  • 通讯作者:
    Watamura et al.(eds.)
ouncomplex structures and the tunaamental equations.
复杂的结构和tunaamental方程。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hajime SATO;Tetsuya OZAWA;Hiroshi SUZUKI;小沢 哲也;Tetsuya OZAWA;小沢 哲也;Tetsuya OZAWA
  • 通讯作者:
    Tetsuya OZAWA
Differential Equations and Schwarzian Derivatives
微分方程和施瓦茨导数
bubcomplex structures and the tundamental equations II
泡复结构和基本方程 II
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hajime SATO;Tetsuya OZAWA;Hiroshi SUZUKI;小沢 哲也;Tetsuya OZAWA
  • 通讯作者:
    Tetsuya OZAWA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OZAWA Tetsuya其他文献

OZAWA Tetsuya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OZAWA Tetsuya', 18)}}的其他基金

Development of non-destructive inspecti on method using High-frequency carrier-type magnetic field sensor
高频载波型磁场传感器无损检测方法的开发
  • 批准号:
    22760307
  • 财政年份:
    2009
  • 资助金额:
    $ 1.48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on Contact transformations and Geometric structures of Schwarzian Derivatives
Schwarzian导数的接触变换和几何结构研究
  • 批准号:
    12640093
  • 财政年份:
    2000
  • 资助金额:
    $ 1.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of topological invariants of plane closed curves
平面闭合曲线拓扑不变量的研究
  • 批准号:
    09640136
  • 财政年份:
    1997
  • 资助金额:
    $ 1.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Moduli theory of strongly pseudo-convex CR structure and its application to higher dimensional isolated singularities
强赝凸CR结构的模理论及其在高维孤立奇点中的应用
  • 批准号:
    17540087
  • 财政年份:
    2005
  • 资助金额:
    $ 1.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and Analysis of Strongly Pseudoconvex CR Structure and Contact Structure
强赝凸CR结构和接触结构的几何与分析
  • 批准号:
    11440019
  • 财政年份:
    1999
  • 资助金额:
    $ 1.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了