Building resources and a model for computing paraphrase based on lexical semantics
构建基于词汇语义的释义计算资源和模型
基本信息
- 批准号:17300047
- 负责人:
- 金额:$ 10.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aiming at building a computational model and computational recourses for computing paraphrase at the level of predicate-argument structure, this research project gained the following results:(i) For paraphrase knowledge, a large-scale hierarchical lexicon of predicate-argument structure was built. The lexicon organizes about 4,000 Japanese basic verbs (about 7,000 senses in total) with predicate-argument structure information in a fine-grained semantic hierarchy so that lexical entries in a semantic class can be regarded as near synonyms. For augmenting this knowledge base, additional knowledge about event relations are extracted from glosses found in a human-use dictionary of Japanese. Over 35,000 relations are extracted and classified into 8 relation types, all of which are considered useful for recognizing paraphrase or textual entailment.(ii) For scaling the basic paraphrase knowledge above, automatic acquisition of semantic relations between events from a large corpus was also exp … More lored. We proposed several extensions to a state-of-the-art method originally designed for entity relation extraction, reporting on the present results of our experiments on a Japanese Web corpus. The results show that (a) there are indeed specific cooccurrence patterns useful for event relation acquisition, (b) the use of cooccurrence samples involving verbal nouns has positive impacts on both re-call and precision, and (c) over five thousand relation instances are acquired from a 500M-sentence Web corpus with a precision of about 66% for action-effect relations.(iii) For building a computational model of paraphrase, we explore the regularity underlying these classes of paraphrases, focusing on the paraphrasing of Japanese light-verb constructions (LVCs). We propose a paraphrasing model for LVCs that is based on transforming the Lexical Conceptual Structures (LCSs) of verbal elements. We also propose a refinement of an existing LCS dictionary. Experimental results show that our LCS-based paraphrasing model characterizes some of the semantic features of those verbs required for generating paraphrases, such as the direction of an action and the relationship between arguments and surface cases. Less
本研究旨在建立一个在谓词-论元结构层次上计算释义的计算模型和计算资源,取得了以下成果:(1)对于释义知识,建立了一个大规模的谓词-论元结构层次词典。该词典将约4,000个日语基本动词(总共约7,000个意义)与谓词-论元结构信息组织在细粒度的语义层次结构中,以便语义类中的词条可以被视为近义词。为了增强这个知识库,额外的知识提取事件关系的注释中发现的人类使用的日语词典。超过35,000个关系被提取并分类为8种关系类型,所有这些关系类型都被认为对识别释义或文本蕴涵有用。(ii)为了扩展上述基本的释义知识,本文还研究了从大型语料库中自动获取事件间语义关系的方法 ...更多信息 爱我们提出了几个扩展到一个国家的最先进的方法,最初设计的实体关系提取,报告我们的实验在日本的Web语料库的目前结果。结果表明:(a)确实存在有助于事件关系获取的特定共现模式;(B)使用包含动词名词的共现样本对重访率和准确率都有积极影响;(c)从500 M句子的Web语料库中获取了超过5000个关系实例,动作-效果关系的准确率约为66%。(iii)为了建立一个释义的计算模型,我们探讨了这些类别的释义背后的规律性,重点是日语轻动词结构(LVC)的释义。我们提出了一个基于动词成分词汇概念结构转换的LVC释义模型。我们还提出了一个改进现有的LCS字典。实验结果表明,我们的基于LCS的释义模型特征的一些语义特征所需的生成释义,如动作的方向和参数之间的关系和表面情况。少
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acquiring Event Relation Knowledge by Learning Cooccurrence Patterns and Fertilizing Cooccurrence Samples with Verbal Nouns
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Shuya Abe;Kentaro Inui;Yuji Matsumoto
- 通讯作者:Shuya Abe;Kentaro Inui;Yuji Matsumoto
Building a paraphrase corpus by class-oriented example sampling
通过面向类别的示例采样构建释义语料库
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Atsushi;Fujita;Kentaro;Inui
- 通讯作者:Inui
Augmenting a Semantic Verb Lexicon with a Large Scale Collection of Example Sentences
用大量例句来扩充语义动词词典
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Kentaro Inui;Toru Hirano;Ryu Iida;Atsushi Fujita;Yuji Matsumoto
- 通讯作者:Yuji Matsumoto
「研究成果報告書概要(和文)」より
摘自《研究结果报告摘要(日文)》
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Kawauchi;et. al.;Nishimura et al.;Dezawa et al.;Yoshizawa et al.;星野 幹雄;星野 幹雄
- 通讯作者:星野 幹雄
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INUI Kentaro其他文献
INUI Kentaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INUI Kentaro', 18)}}的其他基金
Supporting the effective use of health-related online information through the enhancement of health literacy
通过提高健康素养支持有效利用与健康相关的在线信息
- 批准号:
23240018 - 财政年份:2011
- 资助金额:
$ 10.15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




