Embedding structure of projective varieties and the initial ideal of their definig equations
射影簇的嵌入结构及其定义方程的初始理想
基本信息
- 批准号:17540017
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Castelnuovo-Mumford regularity of a projective varierty X refrects its defining equations, generic initial ideal of defining ideal, and the Hilbert function of X. On the other hand, the regularity is expected to have a strong relation to the existence of multisecant lines to X. From this point of view, in this period, for an irreducible, projective variety X of degree d and codimension e, defined over an algebraically closed field, we study (I) multisecant lines to X; (II) hypersurfaces of small degree containing X. In (II), in particular, letting E(X) be the intersection of all hypersurfaces of degree at most d-e+1, containing X, we study if X = E(X) as an evidence of the regularity conjecture. Let B(X) be the points of outside of X, from which the projection of X is not birational onto its image. Similarly, let C(X) be the smooth points of X, from which the projection of X is not birational onto its image. We have the following results.(I-1) If X is smooth of sectional genus g, the length of the intersection of X and a line does not exceed d-e+1-g.(I-2) The length of the intersection of X and a line does not exceed d-e+1 if the projection of X from the line is quasi-finite.(II-1) As sets, X=E(X) outside of B(X), and as schemes, X=E(X) outside of B(X), C(X) and the singular locus Sing(X) of X.(II-2) The dimension of B(X) does not exceed the dimension of Sing(X) puls 1. Moreover, the dimension of C(X) does not exceed the dimension of Sing(X) plus 2.
射影变量X的Castelnuovo-Mumford正则性反映了它的定义方程、定义理想的一般初始理想和X的Hilbert函数。另一方面,期望该正则性与X的多割线的存在性有很强的关系。因此,在此期间,对于定义在代数闭域上的阶数为d、余维为e的不可约射影变量X,我们研究了(1)X的多割线;(II)含X的小次超曲面。在(II)中,特别地,设E(X)为所有不超过d-e+1次的含X的超曲面的交集,我们研究了X = E(X)作为正则性猜想的证据。设B(X)是X外的点,X在这些点上的投影不是二分像。同样地,设C(X)为X的光滑点,X在这些点上的投影不是二分的。我们得到了以下结果。(I-1)如果X是截面格g的光滑,则X与直线相交的长度不超过d-e+1-g。(I-2)如果X从直线上的投影是拟有限的,则X与直线相交的长度不超过d-e+1。(II-1)作为集合,X=E(X)在B(X)之外,作为方案,X=E(X)在B(X), C(X)和X的奇异轨迹Sing(X)之外。(II-2) B(X)的维数不超过Sing(X) puls 1的维数。而且,C(X)的维数不超过Sing(X) + 2的维数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyper surfaces cutting out a projective variety
超曲面切割射影变化
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:佐藤文広;小木曽岳義;Atsushi NOMA;小木曽岳義;Atsushi Noma;小木曽岳義;Atsushi Noma;Atsushi Noma;小木曽岳義;Atsushi Noma;Atsushi Noma;Atsushi Noma;Atsushi Noma;Atsushi Noma;Atsushi Noma;浅沼照雄;Atsushi Noma;浅沼照雄;Atsushi Noma;Atushi Noma;Atsushi NOMA;Atsushi Noma;Atsushi NOMA;浅沼照雄;Atsushi Noma;Atsushi NOMA
- 通讯作者:Atsushi NOMA
Hypersurfaces cutting out a projective varieity
超曲面切出射影多样性
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:NOMA;Atsushi
- 通讯作者:Atsushi
Very ample line bundles on regular surfaces obtained by projection
通过投影获得的规则表面上非常丰富的线束
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Natsuo;Saito;齋藤 夏雄;廣門 正行;齋藤 夏雄;伊藤 浩行;廣門 正行;齋藤 夏雄;Atsushi NOMA
- 通讯作者:Atsushi NOMA
Hypersurfaces cutting out a projective variety and the centers of nonbirational linear projections
超曲面切除射影变化和非双理线性投影的中心
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Atsushi;NOMA
- 通讯作者:NOMA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOMA Atsushi其他文献
NOMA Atsushi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOMA Atsushi', 18)}}的其他基金
Defining ideals of projective varieities and their embedding structure
定义射影簇的理想及其嵌入结构
- 批准号:
20540039 - 财政年份:2008
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




